㈠ 寫出歐式看漲期權和看跌期權平價公式並給出證明
C+Ke^(-rT)=P+S0
平價公式是根據無套利原則推導出來的。
構造兩個投資組合。
1、看漲期權C,行權價K,距離到期時間T。現金賬戶Ke^(-rT),利率r,期權到期時恰好變成K。
2、看跌期權P,行權價K,距離到期時間T。標的物股票,現價S0。
看到期時這兩個投資組合的情況。
1、股價St大於K:投資組合1,行使看漲期權C,花掉現金賬戶K,買入標的物股票,股價為St。投資組合2,放棄行使看跌期權,持有股票,股價為St。
2、股價St小於K:投資組合1,放棄行使看漲期權,持有現金K。投資組合2,行使看跌期權,賣出標的物股票,得到現金K
3、股價等於K:兩個期權都不行權,投資組合1現金K,投資組合2股票價格等於K。
從上面的討論我們可以看到,無論股價如何變化,到期時兩個投資組合的價值一定相等,所以他們的現值也一定相等。根據無套利原則,兩個價值相等的投資組合價格一定相等。所以我們可以得到C+Ke^(-rT)=P+S0。
㈡ 【求解】歐式看漲期權價格 計算題
對於第一問,用股票和無風險貸款來復制。借入B元的無風險利率的貸款,然後購買N單位的股票,使得一年後該組合的價值和期權的價值相等。於是得到方程組:
N*Sup - B*(1+r ) = 5 ; N*Sdown - B*(1+r )= 0。其中Sup、Sdown為上升下降後的股票價格,r為無風險利率8%.於是可以解出N和B,然後N*S - B就是現在期權的價格,S為股票現價。這是根據一價定律,用一個資產組合來完全復制期權的未來現金流,那麼現在該組合的價格就是期權的價格。
對於第二問,思路完全一樣。只是看跌的時候,股票上漲了期權不行權,到期價值為0;股票下跌了期權行權,到期價值為5。也就是把上邊的兩個方程右邊的數交換一下。
希望對你有所幫助。
㈢ 以股票X為標的的一年期歐式看漲期權的價格為2.50元/份,以股票X為標的的一年期歐式看跌期權的價格
根據Call-Put平價公式C+Ke^[-r(T-t)]=P+S,依題意可知:C=2.5,e^[-r(T-t)]=e^(-0.05)=0.95123,P=3.2,S=36,把相關數據代入解得K=38.58元。
㈣ 現有一個期限為3個月的歐式股票看漲期權,跪求 急急急
Call-Put平價公式為P+S=C+Ke^[-r(T-t)]
根據平價公式依題意可知,K=45,C=8,P=1,e^-r=1/(1+10%),T-t=3/12=1/4,S=50。
(註:題目中沒有說明無風險利率是否連續,這是按不連續算的e^-r,由於是3個月期,對於T-t是按年化來計算的。)
把相關數值代入平價公式可得1+50<8+45/(1+10%)^(1/4)=51.94,存在套利機會。
應該通過持有該期權標的物和買入看跌期權,並且賣出看漲期權構成一個套利頭寸組合。
當股票價格為40元,看跌期權進行行權,獲得5元(45-40)的期權價值,扣除1元購入看跌期權成本,實際獲利4元;標的物股票虧損10元(50-40);賣出的看漲期權,由於標的物股票價格低於執行價格,故此看漲期權是不會行權的,所以賣出的看漲期權獲利為賣出時的期權費8元。綜合上述情況,套利利潤為4-10+8=2元。
㈤ 已知股票價格變動如下,rf=5%,100:120/90 ,以此股票為標的資產一年期的歐式期權的執行價格為X=110元,
(1)用單步二叉樹模型
對沖Δ=10/(120-90)=1/3
組合價值=1/3×120-10=30
組合價值折現值=30×e^(-5%×1)=28.54
看漲期權價格=1/3×100-28.54=4.79
(2)用買賣權平價公式:
如果一個投資組合由一隻股票和一個看跌期權組成 (S+Vp),另一個投資組合由一個零息債券/純貼現債券(或者存入銀行存款)和一個看漲期權組成 (K+Vc),那麼這兩個投資組合的收益是一樣的。
110×e^(-5%×1)+4.79=看跌期權價格+100
看跌期權價格=9.43
㈥ 一隻股票的歐式看漲期權喝歐式看跌期權的執行價格均為20美元,且都在3個月後到期 期權價格均為3美元 無風
這位仁兄是做FRM的assig嗎?哈哈。這題不算難,看看書基本上能做出來
㈦ 對於同一股票的歐式看漲期權及看跌期權的執行價格均為20,美元,期限都是3個月,兩個
這是一個錯誤定價產生的套利機會,可以簡單的用Put Call Parity來檢驗(C + PV(x) = P + S)。只要等式不成立,就說明存在定價錯誤。(現實中當然是不可能存在的,)
具體的套利方法如下:
期初以無風險利率借19美元,買入一隻股票。同時賣出一個看漲期權(收到3美元),買入一個看跌期權(支付3美元),期權總成本為0。這種期權的組合被稱作Synthetic Forward Contract(合成遠期合約),無論到期日標的股票價格是多少,都會以20美元賣出,相當於一個遠期合約。
持有股票一個月以後收到1元股息。
持有股票三個月後,無論股價是多少,都以20元賣出,收到20美元。(高於20,賣出的看漲期權被對方行使,需要以20美元賣給對方;低於20,則行駛買入的看跌期權,以20美元賣給看跌期權的賣方)
歸還本息(三個月利息大約19*10%*3/12=0.475),大約19.5左右,剩餘0.5美元,加上之前收到的1美元股息,一共有1.5美元的收益。這期間無論股票價格如何變動,收益都是固定的,期初也不需要任何成本。
㈧ 某投資者剛剛獲得如下股票歐式期權的報價,股票市場價格為20元,3個月期無風險
前期升到自己不虧,便可以了,大約是19.80左右
㈨ 計算看跌期權當前價值
題目要求看跌期權的價格,由於沒有直接求看跌期權價值的模型(我的cpa書上沒有),所以要先求看漲期權的價值,而對於歐式期權,假定看漲期權和看跌期權有相同的執行價格和到期日,則下述等式成立,
看漲期權價格+執行價格的現值=股票的價格+看跌期權價格
那麼:看跌期權價格=看漲期權價格+執行價格的現值-股票的價格
接下來就求看漲期權的價格,我不知道你用的是什麼書,書上是什麼方法,那我就分別用復制原理和風險中性原理來解一下。
先看復制原理,復制原理就是要創建一個買入股票,同時借入貸款的投資組合,使得組合的投資損益等於期權的損益,這樣創建該組合的成本就是期權的價格了。所以就有下面兩個等式:
股票上行時 期權的價值(上行)=買入股票的數量×上行的股價-借款×(1+利率)
股票下行時 期權的價值(下行)=買入股票的數量×下行的股價-借款×(1+利率)
上面兩式相減,就可以求出買入股票的數量了,代入數字來看一下
期權的價值(上行)=108-99=9
期權的價值(下行)=0 (股價低於執行價格,不會執行該期權,所以價值為0)
買入股票的數量=(9-0)/(108-90)=0.5
把0.5再代入 期權的價值(下行)=買入股票的數量×下行的股價-借款×(1+利率)
可以算出借款=0.5×90/1.05=42.86
這樣期權的價值=投資組合的成本=買入股票支出-借款=0.5*100-42.86=7.14
再來看下風險中性原理
期望的報酬率=上行概率×上行的百分比+下行概率×下行的百分比
5%=p×(108-100)/100+(1-p)*(90-100)/100
得出上行概率P=83.33% 下行概率1-p=16.67%
這樣六個月後的期權價值=上行概率×期權上行價值+下行概率×期權下行價值
其中期權的上下行價值前面已經算過了,直接代入數字,得出六個月後期權價值=7.7997
注意這是六個月後的價值,所以還要對他折現7.7997/1.05=7.14
再來看二叉樹模型,這個方法個人不太推薦一開始用,不利於理解,等把原理弄清了再用比較好, 我就直接代入數字吧。
期權的價值=(1+5%-0.9)/(1.08-0.9)*[(109-100)/1.05]+(1.08-1.05)/(1.08-0.9)*(0/1.05)=7.14
可以看到這三個方法結果都一樣,都是7.14。
最後再用我一開始提到的公式來算一下期權的看跌價值
看跌價值=7.14+99/1.05-100=1.43
我是這幾天剛看的cpa財管期權這一章,現學現賣下吧,也不知道對不對,希望你幫我對下答案,當然你有什麼問題可以發消息來問我,盡量回答吧。
關於「問題補充」的回答:
1、答案和我的結果值一致的,書上p=-0.5*100+51.43=0.43 按公式算應該是1.43,而不是0.43,可能是你手誤或書印錯了。
2、書上用的應該是復制原理,只不過我是站在看漲期權的角度去求,而書上直接從看跌期權的角度去求解,原理是一樣的。我來說明一下:
前面說過復制原理要創建一個投資組合,看漲時這個組合是買入股票,借入資金,看跌時正好相反,賣空股票,借出資金。
把看漲時的公式改一下,改成,
股票上行時 期權的價值(上行)=-賣空股票的數量×上行的股價+借出資金×(1+利率)
股票下行時 期權的價值(下行)=-賣空股票的數量×下行的股價+借出資金×(1+利率)
這時,期權的價值(上行)=0(股價高於執行價格,看跌的人不會行權,所以價值為0)
期權的價值(下行)=108-99=9
你書上x就是賣空股票的數量,y就是借出的資金,代入數字
0=-x108+1.05y
9=-x90+1.05y
你說書上x90+y1.05=15,應該是9而不是15,不然算不出x=-0.5 y=51.43,你可以代入驗算一下。
所以,期權的價值=投資組合的成本=借出的資金-賣空股票的金額=51.43-0.5*100=1.43
書上的做法,比我先求看漲期權價值,再求看跌要直接,學習了。