A. 關於股票的數學模型論文
有微觀聯系的股票擇好期權定價
摘要:目前對於擇好期權的定價研究,大多沒有考慮原生資產收益率之間的微觀聯系,使得
定價結果可能偏離真實價值.基於此考慮,給出了兩傢具有微觀聯系的上市公司股票的數學模
型,在此模型基礎上利用delta對沖推導出擇好期權滿足的PDE,通過計價單位轉換的方法求
出擇好期權的定價公式,分析了股票間微觀聯系對擇好期權的價格影響.
關鍵詞:定價模型;微觀聯系;擇好期權
0引言
擇好期權是多資產期權的一種,其價格取決於多種原生資產價格的變化.股票擇好期權的持有人在
到期日有權取得股價表現最好的那隻股票.例如,某投資人擬投資股票A和股票B,但他無法肯定未來
哪一隻股票的回報更高.為此他購買一張擇好期權,確保在期權到期日能取得兩只股票的最佳回報,同
時可以規避因只購買一隻股票所帶來的風險.
目前對於擇好期權的定價研究,大多隻考慮原生資產收益率之間的宏觀相關性,而忽視了它們可能
存在的微觀的相關性,如上市公司之間互相持有股票,其股票價格必定相互影響,呈現齊漲共跌.忽略這
種微觀的相關性,會使得定價結果可能偏離真實價值.文獻[3]給出了n個風險資產Si(i =1,2,…,n)
都遵循幾何布朗運動,且每個隨機元dWi(i =1,2,…,n)互相獨立情形下的擇好期權的模型和定價公
式.該模型並未考慮到股票之間可能存在的微觀聯系對擇好期權價格的影響.基於此考慮,本文作者給
出了兩傢具有微觀聯系的上市公司的股票的數學模型,同時考慮股票的宏觀和微觀相關性,並應用於擇
好期權的定價問題.運用無套利原理推導出兩資產擇好期權所滿足的方程,並給出擇好期權的定價公
式.
1模型的建立
股票擇好期權定價可看作是滿足式(5)所示幾何Brown運動下的一般股票擇好期權定價.圖1取參數
S1=10,S2=10,σ1=0.2,σ2=0.2,ε2=0,ρ=0.5,兩只股票有相同的初始價格與波動率,圖2取
參數S1=10,S2=10,σ1=0.2,σ2=0.3,ε2=0,ρ=0.5,第二隻股票的波動率高於第一隻股票.可
以看到隨著影響因子ε1的變化,股票擇好期權的價格不斷變化,但是正如式(15),V受影響因子,股票
價格,波動率,以及到期日的共同作用,而非影響因子的單調函數[5].
參考文獻:
[1]BLACK F, SCHOLESM. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81,
637-654.
[2]姜禮尚,陳亞浙,劉西桓,等.數學物理方程講義[M]. 2版,北京:高等教育出版社, 1986.
[3]姜禮尚.期權定價的數學模型和方法[M].北京:高等教育出版社, 2004.
[4]約翰·赫爾.期權、期貨和其它衍生產品[M]. 3版,北京:華夏出版社, 1999.
[5]王正林,劉明.精通MATLAB 7[M].北京:電子工業出版社, 2006.
B. 布朗運動的金融數學
將布朗運動與股票價格行為聯系在一起,進而建立起維納過程的數學模型是本世紀的一項具有重要意義的金融創新,在現代金融數學中佔有重要地位。迄今,普遍的觀點仍認為,股票市場是隨機波動的,隨機波動是股票市場最根本的特性,是股票市場的常態。
布朗運動假設是現代資本市場理論的核心假設。現代資本市場理論認為證券期貨價格具有隨機性特徵。這里的所謂隨機性,是指數據的無記憶性,即過去數據不構成對未來數據的預測基礎。同時不會出現驚人相似的反復。隨機現象的數學定義是:在個別試驗中其結果呈現出不確定性;在大量重復試驗中其結果又具有統計規律性的現象。描述股價行為模型之一的布朗運動之維納過程是馬爾科夫隨機過程的一種特殊形式;而馬爾科夫過程是一種特殊類型的隨機過程。隨機過程是建立在概率空間上的概率模型,被認為是概率論的動力學,即它的研究對象是隨時間演變的隨機現象。所以隨機行為是一種具有統計規律性的行為。股價行為模型通常用著名的維納過程來表達。假定股票價格遵循一般化的維納過程是很具誘惑力的,也就是說,它具有不變的期望漂移率和方差率。維納過程說明只有變數的當前值與未來的預測有關,變數過去的歷史和變數從過去到現在的演變方式則與未來的預測不相關。股價的馬爾科夫性質與弱型市場有效性(the weak form of market efficiency)相一致,也就是說,一種股票的現價已經包含了所有信息,當然包括了所有過去的價格記錄。但是當人們開始採用分形理論研究金融市場時,發現它的運行並不遵循布朗運動,而是服從更為一般的幾何布朗運動(geometric browmrian motion)。
C. 幾何布朗運動的介紹
幾何布朗運動(GBM) (也叫做指數布朗運動) 是連續時間情況下的隨機過程,其中隨機變數的對數遵循布朗運動. 1幾何布朗運動在金融數學中有所應用,用來在布萊克-舒爾斯定價模型中模仿股票價格。
D. 求經濟B-S期權定價模型的原理還有計算方法
假定股票價格服從幾何布朗運動,即dSt/St=μdt+σdWt. St為t時點股票價格,μ為漂移量,σ為波動率,Wt為標准布朗運動。使用伊藤公式。然後用無套利原理求得BSPDE。
E. ssc在數學中公式
本系列的前篇從布朗運動出發,介紹了布朗運動的性質並解釋了為什麼使用幾何布朗運動來描述股價是被投資界廣泛接受的。此外,前文給出了伊藤引理的最基本形式,它是隨機分析的基礎,為分析衍生品定價提供了堅實的武器。
作為本系列的後篇,本文將從擴展伊藤引理出發,並用它求解幾何布朗運動,然後推導 BS 微分方程以及 BS 公式(也稱 Black-Scholes-Merton 公式)。在介紹 BS 公式時,論述的重點會放在衍生品定價中的一個核心方法,即風險中性定價理論。此外,我們會花一定的筆墨來解釋 BS 公式中的兩個核心要素(即 N(d_1) 和 N(d_2) 的業務含義),明白它們對理解 BS 公式至關重要。
閱讀提示:下文中將涉及大量數學公式,對閱讀體驗造成影響,我們表示歉意。我們當然不是在寫學術論文,但是必要的數學推導對於理解期權定價模型至關重要。如果你對閱讀大數學實在不感興趣,可以跳過第二、三兩節,從第四節開始看。
在那之前,先來點輕松的,看看 Black,Scholes 和 Merton 三位大咖長什麼樣子。Scholes 和 Merton 因在衍生品定價方面的傑出工作於 1997 年獲得諾貝爾經濟學獎。Black 沒有在列的原因是他不幸地於 1995 年去世,而諾貝爾獎不追授給頒獎時已故 6 個月以上的學者。
2 伊藤引理的一般形式
在前篇中,我們介紹了帶有漂移(drift)和擴散(diffusion)的布朗運動有如下形式的隨機微分方程。在這里,μ 和 σ 被假定為常數。
更一般的,漂移和擴散的參數均可以是隨機過程 X(t) 以及時間 t 的函數。假設我們令 a(X(t),t) 和 b(X(t),t) 表示漂移和擴散參數(則在上面這個例子中,a(X(t),t) = μ 而 b(X(t),t) = σ)。我們稱滿足如下隨機微分方程(stochastic differential equation,或 SDE)的隨機過程為伊藤漂移擴散過程(Itō drift-diffusion process,下稱伊藤過程):
令 f(X(t), t) 為 X(t) 的二階連續可導函數(並對 t 一階可導),由伊藤引理可知(省略自變數以簡化表達):
將 dX = a(X(t),t)dt + b(X(t),t)dB 帶入上式,並且略去所有比 dt 更高階的小量,最終可以得到伊藤引理的一般形式:
由 f 的 SDE 可知,作為 X 和 t 的函數運鏈,f 本身也是一個伊藤過程。更重要的是,伊藤引理說明,df 表達式右側的布朗運動 dB 恰恰正是 dX 表達式中的那個布朗運動。換句話說,在 f 和 X 的隨機性由同一個布朗運動決定,而非兩個獨立的布朗運動。這一點在下文中推導 BS 微分方程時至關重要。
下面我們就利用伊藤引理求解幾何布朗運動。
3 幾何布朗運動求解
對於股票價格 S,可以用滿足如下 SDE 的幾何布朗運動來描述。
上式中 μ 是股票的期望年收益率,σ 是股票年收益率的標准差。顯然,這是一個旁洞孫伊藤過程(a = μS,b = σS)。為了求解 S,令 f = lnS(S 的自然對數)並對 df 使用伊藤引理(註:為了保持符號和前篇的一致性,我們用 S 而非 X 代表股票價格的隨機過程)得到 lnS 的 SDE:
這個式子說明,lnS 是一個帶漂移的布朗運動,它的漂移率為 μ – 0.5σ^2,波動率為 σ。由布朗運動顫攜的性質可知,在任何時間 T,lnS 的變化符合正態分布:
如果一個隨機變數的對數滿足正態分布,我們說這個隨機變數本身滿足對數正態分布(lognormal distribution)。因此,當我們用幾何布朗運動來描述股價波動時,得到的股價滿足對數正態分布。
通過對 lnS 的 SDE 兩邊積分,再對等式兩邊取指數,便可很容易的寫出股價隨時間變化的解析式:
上式乍一看好像有悖於我們的直覺。我們已知股票的年收益率期望為 μ。但在上式中,拋開 B(T) 帶來的隨機性不談而僅看時間 T 的系數,股價的增長速率是 μ – 0.5σ^2 而不是 μ。這意味著什麼呢?數值 μ – 0.5σ^2 又是否是什麼別的收益率呢?
正確答案是,μ – 0.5σ^2 恰恰是股票每年的連續復利期望收益率。利用股價 S 的對數正態特性可以說明這一點。假設 x 代表股票每年的連續復利收益率。因此有 S(T) = S(0)e^(xT),或 x = (1/T)×(lnS(T) - lnS(0))。由上面的分析可知,lnS(T) – lnS(0) 符合均值為 (μ – 0.5σ^2)T、方差為 (σ^2)T 的正態分布。因此每年的連續復利收益率 x 也是正態分布並且滿足:
直觀比較股票的每年期望收益率 μ 和每年連續復利期望收益率 μ – 0.5σ^2,後者考慮了波動 σ,它們的區別就是年收益率序列算數平均值和幾何平均值的區別。
來看一個例子。假設某股票在過去五年的年收益率分別為 15%,20%,30%,-20% 和 25%。這個序列的算數平均值為 14%,因此該股票的每年的(樣本)期望收益率 μ = 14%。再來看看它每年連續復利期望收益率是多少。假設我們在五年前花 100 塊買入它並持有 5 年,那麼在 5 年後我們的回報是 100×1.15×1.20×1.30×0.80×1.25 = 179.4。因此每年(樣本)連續復利期望收益率(即這個收益率序列的幾何平均值)為 12.4%,顯然它低於算數平均值
F. 證券價格服從漂移參數0.05,波動參數0.3的幾何布朗運動,當前價格為95,利率是4% 假設有種
後答案上默認為這個概率等於P[ln(S(0.5)/
G. 布朗運動是什麼
布朗運動的特點是布朗粒子的位移分布和粒子數密度分布都滿足擴散現象的規律。這說明在粒子濃度不均勻時發生的擴散現象,其本質是粒子的布朗運動產生了位移。在實際的技術應用中,擴散技術相當引人重視。 在半導體集成電路製造過程中,常用擴散方法將特定雜質引入半導體的預定部位,以形成器件或組件,使其具有設計的電路功能。擴散過程是在較高溫度下進行的,雜質原子通過晶體中的缺陷(空位或填隙原子)而遷移。所以,作布朗運動的粒子不只有尺度在微米級的顆粒,也可能是原子或分子。布朗粒子的運動特點是具有隨機性和偶然性。 在離子晶體中有正、負兩種離子,同時存在正、負離子空位,正、負離子就是通過這些空位來擴散的。由於這種運動是隨機的和無規則的,各個方向遷移的概率相同,因此,帶電粒子的布朗運動不會產生電流。但是如果加上恆定電場,離子運動就會在隨機的無規則的遷移之上加一項定向運動,從而能傳導電流。 由於作熱運動的大量介質分子(原子)對宏觀小物體的無規碰撞導致隨機運動引起的漲落,這種漲落以布朗運動為代表,所以布朗運動的實質是漲落。 電路中也有漲落現象,譬如電流、電壓的漲落,經過線路放大,產生雜訊。在導體中電子的熱運動是無規則的,有外電場時,在平均電流的背景上,還有一部分漲落電流,它使電信號產生雜訊。 在愛因斯坦關於布朗運動的論文發表之前,1900年法國數學家巴施里葉發表了論述股票的論文《投機理論》,認為根據當前的股價並不能確切知道下一時刻的股價,而只知道下一時刻股價的概率分布。他對股票價格的不規則波動構造了一個數學模型,這個模型與1905年愛因斯坦為布朗運動所建立的模型一致。後來,「股票價格比例變化是一種布朗運動」成為金融研究中的一個普遍假設。
H. 有關布朗運動和期權定價的問題,望大神解答!
布朗運動是將看起來連成一片的液體,在高倍顯微鏡下看其實是由許許多多分子組成的。液體分子不停地做無規則的運動,不斷地隨機撞擊懸浮微粒。當懸浮的微粒足夠小的時候,由於受到的來自各個方向的液體分子的撞擊作用是不平衡的。在某一瞬間,微粒在另一個方向受到的撞擊作用超強的時候,致使微粒又向其它方向運動,這樣,就引起了微粒的無規則的運動就是布朗運動。
期權定價模型(OPM)----由布萊克與斯科爾斯在20世紀70年代提出。該模型認為,只有股價的當前值與未來的預測有關;變數過去的歷史與演變方式與未來的預測不相關 。模型表明,期權價格的決定非常復雜,合約期限、股票現價、無風險資產的利率水平以及交割價格等都會影響期權價格。