『壹』 通達信什麼時候支持python量化交易
1、一個強大的N維數組對象Array;
2、比較成熟的(廣播)函數庫;
3、用於整合C/C++和Fortran代碼的工具包;
4、實用的線性代數、傅里葉變換和隨機數生成函數。numpy和稀疏矩陣運算包scipy配合使用更加方便。
『貳』 python量化投資是什麼
量化投資是指通過數量化方式及計算機程序化發出買賣指令,以獲取穩定收益為目的的交易方式。在海外的發展已有30多年的歷史,其投資業績穩定,市場規模和份額不斷擴大、得到了越來越多投資者認可。從全球市場的參與主體來看,按照管理資產的規模,全球排名前四以及前六位中的五家資管機構,都是依靠計算機技術來開展投資決策,由量化及程序化交易所管理的資金規模在不斷擴大。
python是一種編程語言,python量化投資也就是通過使用Python編寫能夠發出買賣指令的程序來交易。
『叄』 有沒有python應用於量化交易的實戰課
丁鵬主講的《量化投資-策略與技術》
有空來掘金量化社區逛逛,與各位寬客互動交流學習
『肆』 python炒股可行嗎
非常不可行,還是靠人工吧,人工才是真正能夠理解人的心理的,炒股本來就是一個心理的游戲。。
『伍』 金融工程,量化投資學什麼軟體好Python還是Matlab
個人覺得還是都會比較好。技多不壓身。量化投資用Matlab 和 C++,一個建模一個執行,足夠了。實在不愛用Matlab的話,R和Python也行。
選擇python推薦可以閱讀:《量化投資:以python為工具》主要講解量化投資的思想和策略,並藉助Python 語言進行實戰。《量化投資:以Python為工具》一共分為5 部分,第1 部分是Python 入門,第2 部分是統計學基礎,第3 部分是金融理論、投資組合與量化選股,第4 部分是時間序列簡介與配對交易,第5 部分是技術指標與量化投資。《量化投資:以Python為工具》首先對Python 編程語言進行介紹,通過學習,讀者可以迅速掌握用Python 語言處理數據的方法,並靈活運用Python 解決實際金融問題;其次,向讀者介紹量化投資的理論知識,主要講解量化投資所需的數量基礎和類型等方面;最後講述如何在Python 語言中構建量化投資策略。
選擇MATLAB推薦閱讀:《問道量化投資:用MATLAB來敲門》主要講述以MATLAB為分析工具的量化投資,由「MATLAB入門」、「MATLAB量化投資基礎」和「MATLAB量化投資相關函數詳解」3篇組成。入門篇讓零編程基礎的讀者快速掌握強大的數值計算和模擬分析工具MATLAB;量化投資基礎篇簡要介紹相關的投資策略及模型,重點講述MATLAB中的模型實現及應用;函數詳解篇對MATLAB的金融工具箱、衍生品工具箱和固定收益工具箱中的全部函數一一進行詳解,以幫助讀者快速掌握這些函數。
『陸』 Python數字貨幣量化交易進階課程大家學的怎麼樣了
Python數字貨幣量化交易進階課程,已經學完了,大體掌握了。
『柒』 《Python與量化投資從基礎到實戰》pdf下載在線閱讀,求百度網盤雲資源
《Python與量化投資》(王小川)電子書網盤下載免費在線閱讀
資源鏈接:
鏈接:
書名:Python與量化投資
作者:王小川
豆瓣評分:6.8
出版社:電子工業出版社
出版年份:2018-3
頁數:424
內容簡介:
本書主要講解如何利用Python進行量化投資,包括對數據的獲取、整理、分析挖掘、信號構建、策略構建、回測、策略分析等。本書也是利用Python進行數據分析的指南,有大量的關於數據處理分析的應用,並將重點介紹如何高效地利用Python解決投資策略問題。本書分為Python基礎和量化投資兩大部分:Python基礎部分主要講解Python軟體的基礎、各個重要模塊及如何解決常見的數據分析問題;量化投資部分在Python基礎部分的基礎上,講解如何使用優礦(uqer.io)回測平台實現主流策略及高級定製策略等。
本書可作為專業金融從業者進行量化投資的工具書,也可作為金融領域的入門參考書。在本書中有大量的Python代碼、Python量化策略的實現代碼等,尤其是對於量化策略的實現代碼,讀者可直接自行修改並獲得策略的歷史回測結果,甚至可將代碼直接實盤應用,進行投資。
作者簡介:
王小川,華創證券研究所金融工程高級分析師,國內知名MATLAB、Python培訓專家,MATLABSKY創始人之一,人大經濟論壇CDA課程Python金牌講師。從事量化投資相關的工作,承擔了部分高校的統計課程教學任務,長期研究機器學習在統計學中的應用,精通MATLAB、Python、SAS等統計軟體,熱衷於數據分析和數據挖掘工作,有著扎實的理論基礎和豐富的實戰經驗。著有《MATLAB神經網路30個案例分析》和《MATLAB神經網路43個案例分析》。
陳傑,華創證券研究所金融工程團隊負責人,擁有CFA、FRM資格。從2009年開始從事量化開發工作。在入職華創之前,曾擔任申萬宏源研究所金融工程首席分析師。
盧威,華創證券研究所金融工程分析師,前優礦網量化分析師,為優礦網資深用戶,在優礦網分享過多篇高質量的量化研究報告,擅長使用Python進行量化投資研究。
劉昺軼,上海交通大學工學碩士,研究方向為斷裂力學、流體力學,擅長Python編程、統計建模與Web開發,現為量化投資界新兵,正在快速成長。
秦玄晉,上海對外經貿大學會計學碩士,有兩年量化投資經驗,研究方向為公司金融。
蘇博,上海財經大學金融信息工程碩士,主要研究方向為金融大數據分析。
徐晟剛,復旦大學西方經濟學碩士,數理功底深厚,熱愛編程與策略研究,精通Python、MATLAB等編程語言,有3年金融工程策略研究經驗,擅長擇時和事件類策略。
『捌』 量化投資r語言和python的區別
r語言和Python都可以做量化投資分析,在此功能上沒有太大的區別。
讓語言和Python主要區別是,他們是不同的兩個軟體,就好比excel和wps的區別。
『玖』 怎麼學習python量化交易
下面教你八步寫個量化交易策略——單股票均線策略
1 確定策略內容與框架
若昨日收盤價高出過去20日平均價今天開盤買入股票
若昨日收盤價低於過去20日平均價今天開盤賣出股票
只操作一隻股票,很簡單對吧,但怎麼用代碼說給計算機聽呢?
想想人是怎麼操作的,應該包括這樣兩個部分
既然是單股票策略,事先決定好交易哪一個股票。
每天看看昨日收盤價是否高出過去20日平均價,是的話開盤就買入,不是開盤就賣出。每天都這么做,循環下去。
對應代碼也是這兩個部分
definitialize(context):
用來寫最開始要做什麼的地方
defhandle_data(context,data):
用來寫每天循環要做什麼的地方
2 初始化
我們要寫設置要交易的股票的代碼,比如 兔寶寶(002043)
definitialize(context):
g.security='002043.XSHE'#存入兔寶寶的股票代碼
3 獲取收盤價與均價
首先,獲取昨日股票的收盤價
#用法:變數=data[股票代碼].close
last_price=data[g.security].close#取得最近日收盤價,命名為last_price
然後,獲取近二十日股票收盤價的平均價
#用法:變數=data[股票代碼].mavg(天數,『close』)
#獲取近二十日股票收盤價的平均價,命名為average_price
average_price=data[g.security].mavg(20,'close')
4 判斷是否買賣
數據都獲取完,該做買賣判斷了
#如果昨日收盤價高出二十日平均價,則買入,否則賣出
iflast_price>average_price:
買入
eliflast_price<average_price:
賣出
問題來了,現在該寫買賣下單了,但是拿多少錢去買我們還沒有告訴計算機,所以每天還要獲取賬戶里現金量。
#用法:變數=context.portfolio.cash
cash=context.portfolio.cash#取得當前的現金量,命名為cash
5 買入賣出
#用法:order_value(要買入股票股票的股票代碼,要多少錢去買)
order_value(g.security,cash)#用當前所有資金買入股票
#用法:order_target(要買賣股票的股票代碼,目標持倉金額)
order_target(g.security,0)#將股票倉位調整到0,即全賣出
6 策略代碼寫完,進行回測
把買入賣出的代碼寫好,策略就寫完了,如下
definitialize(context):#初始化
g.security='002043.XSHE'#股票名:兔寶寶
defhandle_data(context,data):#每日循環
last_price=data[g.security].close#取得最近日收盤價
#取得過去二十天的平均價格
average_price=data[g.security].mavg(20,'close')
cash=context.portfolio.cash#取得當前的現金
#如果昨日收盤價高出二十日平均價,則買入,否則賣出。
iflast_price>average_price:
order_value(g.security,cash)#用當前所有資金買入股票
eliflast_price<average_price:
order_target(g.security,0)#將股票倉位調整到0,即全賣出
現在,在策略回測界面右上部,設置回測時間從20140101到20160601,設置初始資金100000,設置回測頻率,然後點擊運行回測。
7 建立模擬交易,使策略和行情實時連接自動運行
策略寫好,回測完成,點擊回測結果界面(如上圖)右上部紅色模擬交易按鈕,新建模擬交易如下圖。 寫好交易名稱,設置初始資金,數據頻率,此處是每天,設置好後點提交。
8 開啟微信通知,接收交易信號
點擊聚寬導航欄我的交易,可以看到創建的模擬交易,如下圖。 點擊右邊的微信通知開關,將OFF調到ON,按照指示掃描二維碼,綁定微信,就能微信接收交易信號了。
『拾』 用Python怎麼做量化投資
本文將會講解量化投資過程中的基本流程,量化投資無非這幾個流程,數據輸入------策略書寫------回測輸出
其中策略書寫部分還涉及到編程語言的選擇,如果不想苦惱數據輸入和回測輸出的話,還要選擇回測平台。
一、數據
首先,必須是數據,數據是量化投資的基礎
如何得到數據?
Wind:數據來源的最全的還是Wind,但是要付費,學生可以有免費試用的機會,之後還會和大家分享一下怎樣才Wind里摘取數據,Wind有很多軟體的借口,Excel,Matlab,Python,C++。
預測者網:不經意間發現,一個免費提供股票數據網站 預測者網,下載的是CSV格式
TB交易開拓者:Tradeblazer,感謝@孫存浩提供數據源
TuShare:TuShare -財經數據介麵包,基於Python的財經數據包,利用Python進行摘取
如何存儲數據?
Mysql
如何預處理數據?
空值處理:利用DataFrame的fill.na()函數,將空值(Nan)替換成列的平均數、中位數或者眾數
數據標准化
數據如何分類?
行情數據
財務數據
宏觀數據
二、計算語言&軟體
已經有很多人在網上詢問過該選擇什麼語言?筆者一開始用的是matlab,但最終選擇了python
python:庫很多,只有你找不到的,沒有你想不到,和量化這塊結合比較緊密的有:
Numpy&Scipy:科學計算庫,矩陣計算
Pandas:金融數據分析神器,原AQR資本員工寫的一個庫,處理時間序列的標配
Matplotlib:畫圖庫
scikit-learn:機器學習庫
statsmodels:統計分析模塊
TuShare:免費、開源的python財經數據介麵包
Zipline:回測系統
TaLib:技術指標庫
matlab:主要是矩陣運算、科學運算這一塊很強大,主要有優點是WorkSpace變數可視化
python的Numpy+Scipy兩個庫完全可以替代Matlab的矩陣運算
Matplotlib完克Matlab的畫圖功能
python還有很多其他的功能
pycharm(python的一款IDE)有很棒的調試功能,能代替Matlab的WorkSpace變數可視化
推薦的python學習文檔和書籍
關於python的基礎,建議廖雪峰Python 2.7教程,適合於沒有程序基礎的人來先看,涉及到python的基本數據類型、循環語句、條件語句、函數、類與對象、文件讀寫等很重要的基礎知識。
涉及到數據運算的話,其實基礎教程沒什麼應用,python各類包都幫你寫好了,最好的學習資料還是它的官方文檔,文檔中的不僅有API,還會有寫實例教程
pandas文檔
statsmodels文檔
scipy和numpy文檔
matplotlib文檔
TuShare文檔
第二,推薦《利用Python進行數據分析》,pandas的開發初衷就是用來處理金融數據的
三、回測框架和網站
兩個開源的回測框架
PyAlgoTrade - Algorithmic Trading
Zipline, a Pythonic Algorithmic Trading Library