導航:首頁 > 股市知識 > 股票量化交易python

股票量化交易python

發布時間:2021-05-11 09:51:44

A. 用Python怎麼做量化投資

本文將會講解量化投資過程中的基本流程,量化投資無非這幾個流程,數據輸入------策略書寫------回測輸出
其中策略書寫部分還涉及到編程語言的選擇,如果不想苦惱數據輸入和回測輸出的話,還要選擇回測平台。
一、數據
首先,必須是數據,數據是量化投資的基礎
如何得到數據?

Wind:數據來源的最全的還是Wind,但是要付費,學生可以有免費試用的機會,之後還會和大家分享一下怎樣才Wind里摘取數據,Wind有很多軟體的借口,Excel,Matlab,Python,C++。
預測者網:不經意間發現,一個免費提供股票數據網站 預測者網,下載的是CSV格式
TB交易開拓者:Tradeblazer,感謝@孫存浩提供數據源
TuShare:TuShare -財經數據介麵包,基於Python的財經數據包,利用Python進行摘取
如何存儲數據?
Mysql
如何預處理數據?

空值處理:利用DataFrame的fill.na()函數,將空值(Nan)替換成列的平均數、中位數或者眾數
數據標准化
數據如何分類?
行情數據
財務數據
宏觀數據
二、計算語言&軟體

已經有很多人在網上詢問過該選擇什麼語言?筆者一開始用的是matlab,但最終選擇了python
python:庫很多,只有你找不到的,沒有你想不到,和量化這塊結合比較緊密的有:
Numpy&Scipy:科學計算庫,矩陣計算
Pandas:金融數據分析神器,原AQR資本員工寫的一個庫,處理時間序列的標配

Matplotlib:畫圖庫
scikit-learn:機器學習庫
statsmodels:統計分析模塊
TuShare:免費、開源的python財經數據介麵包

Zipline:回測系統
TaLib:技術指標庫
matlab:主要是矩陣運算、科學運算這一塊很強大,主要有優點是WorkSpace變數可視化

python的Numpy+Scipy兩個庫完全可以替代Matlab的矩陣運算
Matplotlib完克Matlab的畫圖功能
python還有很多其他的功能
pycharm(python的一款IDE)有很棒的調試功能,能代替Matlab的WorkSpace變數可視化
推薦的python學習文檔和書籍
關於python的基礎,建議廖雪峰Python 2.7教程,適合於沒有程序基礎的人來先看,涉及到python的基本數據類型、循環語句、條件語句、函數、類與對象、文件讀寫等很重要的基礎知識。

涉及到數據運算的話,其實基礎教程沒什麼應用,python各類包都幫你寫好了,最好的學習資料還是它的官方文檔,文檔中的不僅有API,還會有寫實例教程
pandas文檔
statsmodels文檔
scipy和numpy文檔
matplotlib文檔

TuShare文檔
第二,推薦《利用Python進行數據分析》,pandas的開發初衷就是用來處理金融數據的
三、回測框架和網站
兩個開源的回測框架
PyAlgoTrade - Algorithmic Trading

Zipline, a Pythonic Algorithmic Trading Library

B. 用python做量化交易要學多久

5個月。

python憑借其突出的語言優勢與特性,已經融入到各行各業的每個領域。一般來說,python培訓需要脫產學習5個月左右,這樣的時長才能夠讓學員既掌握工作所需的技能,還能夠積累一定的項目經驗。當然如果你想要在人工智慧的路上越走越遠,則需要不斷的積累和學習。

python培訓的5個月時間里,有相當大一部分時間是在實戰做項目,第一階段是為期一個月學習python的核心編程,主要是python的語言基礎和高級應用,幫助學員獲得初步軟體工程知識並樹立模塊化編程思想。學完這一階段的內容,學員已經能夠勝任python初級開發工程師的職位。

(2)股票量化交易python擴展閱讀:

Python開發基礎課程內容包括:計算機硬體、操作系統原理、安裝linux操作系統、linux操作系統維護常用命令、Python語言介紹、環境安裝、基本語法、基本數據類型、二進制運算、流程式控制制、字元編碼、文件處理、數據類型、用戶認證、三級菜單程序、購物車程序開發、函數、內置方法、遞歸、迭代器、裝飾器、內置方法、員工信息表開發、模塊的跨目錄導入、常用標准庫學習,b加密 e正則logging日誌模塊等,軟體開發規范學習,計算器程序、ATM程序開發等。

C. 可以不通過平台自己用Python寫量化交易策略嗎

在哪?可以啊,只要有你有能力,你怎麼學都可以

D. 作為Python程序員 怎樣入門量化交易

量化交易大多用在股票交易上,量化是指將某隻股票或者摸個行業的數據進行量化,在更具各家機構自己的量化公式進行選擇,量化交易只是選擇,並不涉及交易,程序化交易也是一種量化交易,但是是更具已有的數據進行,比如各種行情指標,MACD KDJ等,無法像量化交易那樣把能涉及到的所有數據進行量化,程序化交易更側重交易的自動進行,沒有認為干預,且模型編寫簡單,個人用戶也可以進行

E. 通達信什麼時候支持python量化交易

1、一個強大的N維數組對象Array;
2、比較成熟的(廣播)函數庫;
3、用於整合C/C++和Fortran代碼的工具包;
4、實用的線性代數、傅里葉變換和隨機數生成函數。numpy和稀疏矩陣運算包scipy配合使用更加方便。

F. 量化投資 用python好 還是c++

Python是非常適合做quant類工作的語言,本身就是科學計算方面的統治級語言,現在加入了IPython,pandas等重量級神器,為Quant類工作量身定做,而且仍在飛速發展中,以後會越來越重要。

關於其他語言,首先介紹一下我自己最喜歡的一個比較小眾的組合,Mathematica+Java/Scala。 Mathematica的優點在於:本身提供函數式的編程語言,表達能力非常強大,比如Map/Rece是標配,很多時候不需要去做煩人的for循環或下標控制,排版經常可以直接照數學公式原樣輸入,即直觀又不容易寫錯;代碼和輸出混排的排版方式使得建模時的演算和推理過程非常流暢,甚至還可以直接生成動畫,對於找直觀理解非常有幫助(這幾點分別被IPython和R偷師了一部分)。Mathematica的缺點在於對金融類的時間序列數據沒有很好的內建支持,使得存儲和計算都會比較低效,因此需要用內嵌Java的方式來補足,對於數據格式或性能敏感的操作都可以用Java/Scala實現。這個組合在我心目中無出其右,不論是快速建模,還是建模轉生產,都遠遠領先於其他選擇。但Mathematica的商用授權很貴,如果公司本身不認可的話很難得到支持,這是最致命的缺陷。另外隨著Python系的逐漸成熟,領先優勢在逐漸縮小,長遠看Python的勢頭更好一些。

其他答案里也列舉了不少其他語言,我自己既做Quant的工作,也做軟體開發的工作,這里想從一個軟體工程師的角度,說說我的理解。平時工作中會和一些偏Quant背景的人合作,很容易發現建模能力好的人往往在計算機方面基礎比較薄弱(因為以前的訓練重點不在這里)。他們也可以快速學習掌握一種像C++,Java這樣的語言,實現很多必要的功能。但是一方面這些語言陡峭的學習曲線和繁瑣的開發步驟會給他們真正要做的工作增加不必要的負擔,另一方面一旦涉及到性能敏感的情景,他們對計算機體系結構缺乏理解的缺點就容易暴露,比如說很可能他們沒有計算復雜度,內存碎片,cache miss,甚至多線程等概念,導致寫出的程序存在相當大的隱患。

即使是計算機功底扎實,如果每天的工作需要在C++,Python,R/Matlab,甚至一眾腳本語言之前來回切換,思維負擔也會非常重,人的精力是有限的,很難同時兼顧數學建模和底層代碼調試這種差距巨大的工作。長期發展下去最可能的結果就是要麼遠離建模,專心做生產環境開發,要麼遠離生產環境,專心建模。這種局面顯然不論對個人還是團隊都是有很大弊端的。

如果深入思考這個問題,相信不難得出結論,對於Quant來說,C++這種相當面向機器的語言肯定不是最佳選擇。的確在歷史上,它比更面向機器的C已經友好了很多,但是在計算機技術飛速發展的今天,如果還需要Quant大量使用C++做建模類的工作顯然是很遺憾的事情。設想一下你拿到一份股票數據,不論你是想分析價格走勢,成交量分布,還是波動性,第一件要做的事一定是畫出圖來看看,有一個直觀認識。如果你的工具是C++,肯定有很多時間花在編譯,調試,再編譯的過程上,好容易能解析文件了,接下來怎麼算移動平均?怎麼算波動性?全都要自己寫代碼。再然後怎麼畫圖?這整個工作流簡直慘不忍睹,這些問題浪費掉你大部分精力,而他們全部和你真正感興趣的工作毫無關系。所以如果你是一個數理金融等背景的新人打算開始Quant生涯,在決定是否要投資到這項重量級技術上時需要慎重,即便它目前的市場定價可能仍在峰值。相比之下我認為Python會是更理想的選擇,即能很好的完成建模工作,也可以訓練一定的編程技巧,使你在必要時也能勝任一些簡單的C++工作。

最後同意 @袁浩瀚,不要拘泥於語言,不論學習那一種,對其他的語言還是要抱有開放的心態。另外世界變化很快,你會發現單一的語言分類方式其實是沒有意義的,每一門語言在發展過程中都會逐漸吸收其他語言的特性,比如Python本身就既有C/C++/Java那樣命令式的特點,也有函數式的特點,像pandas甚至還提供類似SQL的使用方式,在其他語言或系統里也都或多或少包含了不同的特點,可以在學習過程里慢慢體會。

G. python的量化代碼怎麼用到股市中

2010 ~ 2017 滬深A股各行業量化分析

在開始各行業的量化分析之前,我們需要先弄清楚兩個問題:

「2010-2017」投資於優質行業龍頭的收益表現

選好行業之後,下面進入選公司環節。我們知道,即便是一個好的行業也仍然存在表現不好的公司,那麼什麼是好的公司呢,本文試圖從營業收入規模和利潤規模和來考察以上五個基業長青的行業,從它們中去篩選公司作為投資標的。

3.1按營業收入規模構建的行業龍頭投資組合

首先,我們按照營業收入規模,篩選出以上5個行業【醫葯生物,建築裝飾,電氣設備,銀行和汽車】從2010年至今的行業龍頭如下表所示:

結論

通過以上行業分析和投資組合的歷史回測可以看到:

出自:JoinQuant 聚寬數據 JQData

H. 有沒有人在學python做量化交易的

推薦一些書籍
1 像計算機科學家一樣思考Python
2 [Python標准庫].Doug.Hellmann.掃描版
3《Python科學計算》.(張若愚)
4 用Python做科學計算
5 利用Python進行數據分析
6 Python數據分析基礎教程:NumPy學習指南(第2版)
7 NumPy攻略
7 Python科學計算與數據分析
8 A Practical Guide To Quantitative Portfolio Trading
9 Data Structures and Algorthms Using Python
10 Mastering Python for Finance

計量經濟學
1 金融計量學從初級 到 高級建模技術
2 哈佛教材 應用計量經濟學 stata
3 高等計量經濟學 李子奈等編著
4 Analysis of Financial Time Series- Financial Econometrics(2002)金融時序分析
5 Phoebus J. Dhrymes, Mathematics for Econometrics, 4e
6 Osborne,Rubinstein-A Course in Game Theory
7 Model Building in Mathematical Programming(5e)
8 Hayashi - Econometrics
9 Gujarati-Essentials of Econometrics計量精要
10 Akira Takayama - Mathematical Economics

I. 國內量化交易平台哪家支持python等多門編程語言開發策略

你好,在金融量化交易領域,掘金量化交易平台可以支持多種主流編程語言的開發,包括python、R、Matlab, C, C++, C# ;可以滿足掌握不同編程語言的量化策略者的需求。

J. 怎麼學習python量化交易

下面教你八步寫個量化交易策略——單股票均線策略

1 確定策略內容與框架

若昨日收盤價高出過去20日平均價今天開盤買入股票
若昨日收盤價低於過去20日平均價今天開盤賣出股票

只操作一隻股票,很簡單對吧,但怎麼用代碼說給計算機聽呢?

想想人是怎麼操作的,應該包括這樣兩個部分

既然是單股票策略,事先決定好交易哪一個股票。

每天看看昨日收盤價是否高出過去20日平均價,是的話開盤就買入,不是開盤就賣出。每天都這么做,循環下去。

對應代碼也是這兩個部分

definitialize(context):
用來寫最開始要做什麼的地方
defhandle_data(context,data):
用來寫每天循環要做什麼的地方

2 初始化

我們要寫設置要交易的股票的代碼,比如 兔寶寶(002043)

definitialize(context):
g.security='002043.XSHE'#存入兔寶寶的股票代碼

3 獲取收盤價與均價

首先,獲取昨日股票的收盤價

#用法:變數=data[股票代碼].close
last_price=data[g.security].close#取得最近日收盤價,命名為last_price

然後,獲取近二十日股票收盤價的平均價

#用法:變數=data[股票代碼].mavg(天數,『close』)
#獲取近二十日股票收盤價的平均價,命名為average_price
average_price=data[g.security].mavg(20,'close')

4 判斷是否買賣

數據都獲取完,該做買賣判斷了

#如果昨日收盤價高出二十日平均價,則買入,否則賣出
iflast_price>average_price:
買入
eliflast_price<average_price:
賣出

問題來了,現在該寫買賣下單了,但是拿多少錢去買我們還沒有告訴計算機,所以每天還要獲取賬戶里現金量。

#用法:變數=context.portfolio.cash
cash=context.portfolio.cash#取得當前的現金量,命名為cash

5 買入賣出

#用法:order_value(要買入股票股票的股票代碼,要多少錢去買)
order_value(g.security,cash)#用當前所有資金買入股票
#用法:order_target(要買賣股票的股票代碼,目標持倉金額)
order_target(g.security,0)#將股票倉位調整到0,即全賣出

6 策略代碼寫完,進行回測

把買入賣出的代碼寫好,策略就寫完了,如下

definitialize(context):#初始化
g.security='002043.XSHE'#股票名:兔寶寶
defhandle_data(context,data):#每日循環
last_price=data[g.security].close#取得最近日收盤價
#取得過去二十天的平均價格
average_price=data[g.security].mavg(20,'close')
cash=context.portfolio.cash#取得當前的現金
#如果昨日收盤價高出二十日平均價,則買入,否則賣出。
iflast_price>average_price:
order_value(g.security,cash)#用當前所有資金買入股票
eliflast_price<average_price:
order_target(g.security,0)#將股票倉位調整到0,即全賣出

現在,在策略回測界面右上部,設置回測時間從20140101到20160601,設置初始資金100000,設置回測頻率,然後點擊運行回測。

7 建立模擬交易,使策略和行情實時連接自動運行

策略寫好,回測完成,點擊回測結果界面(如上圖)右上部紅色模擬交易按鈕,新建模擬交易如下圖。 寫好交易名稱,設置初始資金,數據頻率,此處是每天,設置好後點提交。

8 開啟微信通知,接收交易信號

點擊聚寬導航欄我的交易,可以看到創建的模擬交易,如下圖。 點擊右邊的微信通知開關,將OFF調到ON,按照指示掃描二維碼,綁定微信,就能微信接收交易信號了。

閱讀全文

與股票量化交易python相關的資料

熱點內容
支付寶裡面怎麼選好基金股票 瀏覽:114
怎麼從公司股票盤面上算市值 瀏覽:527
顧奈奈 瀏覽:495
龍元建設境股票行情 瀏覽:429
股票競價軟體排行榜 瀏覽:952
股票交易分析是 瀏覽:266
找靚機回收手機如何交易股票 瀏覽:8
從基礎面和技術面分析股票 瀏覽:15
2019年社保基金加倉股票 瀏覽:944
股票配資電話資源 瀏覽:497
找一份股票分析師的工作 瀏覽:786
炒股怎麼自己編程 瀏覽:578
上市公司股票回購股票滯漲 瀏覽:748
深市股票大宗交易時間 瀏覽:835
商品期貨和股票誰風險大 瀏覽:100
施樂的股票分析 瀏覽:889
東方有線股票行情 瀏覽:459
中微量子科技股票行情 瀏覽:800
長江證券股票交易軟體 瀏覽:273
基金風險大股票風險大 瀏覽:392