導航:首頁 > 股市知識 > 股票的量化分析關系

股票的量化分析關系

發布時間:2021-05-16 10:15:44

㈠ 用量化理論去分析一個股票

量化就是指通過一些數學模型,例如概率模型,風險模型等,去預測接下來的事情發生的概率。用量化的理論去分析股票就是用這些量化數學模型去預測一個股票接下來的走勢、漲跌概率等,數學的東西比較復雜,推薦你用勝算在握量化炒股APP,他們就是做量化投資炒股的,可以跟著學習一下..

㈡ 3分鍾了解深度學習跟量化交易是什麼關系

機器學習怎樣應用於量化交易(一)
曾有朋友問過,國內現在量化領域機器學習應用的少,是否因為效果不如簡單的策略。其實,把機器學習應用在量化交易上始終面臨著兩難,卻並不是無解的兩難。很多時候並不是機器學習不work,而是真正懂如何用正確科學的統計思維使用Machine Learning的人才太少。機器學習涉及到特徵選擇、特徵工程、模型選擇、數據預處理、結果的驗證和分析等一整套建模流程,廣義角度來說就不單單是模型選擇的問題。所以,如果認為「用支持向量機成功預測股票漲跌」 這樣的研究,就是把機器學習應用於量化交易,這種狹義的認識無疑是買櫝還珠,對機器學習領域散落遍地的珍珠視而不見。如果把機器學習的崛起放在歷史進程中考量,無非就是趨勢的延續:現在,可通過系統的數據分析證實過去模糊不定的經驗,機器學習演算法將未曾被察覺的規律得以浮現紙面。在我看來,未來的發展概有兩個方向:1.針對量化交易的統計學習演算法被提出,使其適合於雜訊大,分布不穩定的金融數據分析;2.對於機器學習的熱情回歸理性,從工具為導向回歸到問題為導向。針對如何以問題為導向,在機器學習演算法中挑選合適的工具,分享一些思路。1.多因子模型的因子權重計算當我們在構建多因子模型且已經選定了一系列因子之後,要如何根據不同的市場情況調整各個因子的權重呢?在以往的研究中發現,與其它演算法相比較,隨機森林演算法對於存在非線性、噪音和自變數共線性的訓練集的分析結果更出色。所以,目前在多因子模型的權重上,採用當期收益率對上期因子進行隨機森林回歸分析,以確定下一期多因子模型的因子權重。2.缺失值處理處理缺失值在金融的量化分析中是個無可避免的問題。選取合理的缺失值處理方法,依賴於數據本身的特點、數據缺失的情況、其對應的經濟學意義,以及我們需要使用數據進行何種計算。在嘗試構建多因子模型時,我們選擇了兩種缺失值替換方法:(1)採用期望最大化演算法 來用同一變數的已知數據對缺失值進行極大似然估計。(2)把模型中包含的所有因子作為特徵變數,並賦予其相同的權重,再採用機器學習中的K-近鄰演算法來尋找最相似的標的,保證缺失值替換後,不會強化一部分因子的影響力。其實在量化領域,機器學習解決著線性模型天生的缺陷或弊端,所以還是有著很深的介入的。除去凸優化、降維(提取市場特徵)等領域的應用,目前「非動態性」和「非線性」是兩個重要的弊端。金融關系之間並非靜態,很多時候也不是線性的。統計學習的優勢此時就會體現出來,它們能夠迅速地適應市場,或者用一種更「准確的」方式來描述市場。在國內,機器學習在量化內應用跟領域有很大的關系,跟頻率也有很大的關系。比如,CTA的運用可能就要多於股票,它處理數據的維度要遠小於股票,獲取市場的長度和動態又強於股票。股票市場的momentum要弱於期貨市場的momentum,它的趨勢與股票相比更明顯和低雜訊。這些特徵對於機器學習發揮作用都更加有利。很可能國內一些交易執行演算法的設計上就借鑒了機器學習。我們可以通過學習訂單薄特徵,對下一期盤口變化做一些概率上的預測,經過一定樣本的訓練之後,可以顯著地提升演算法表現。而我仍謹慎看好深度學習等機器學習方法的原因在於,在認識市場上,現行的大部分方法與這些方法並不在一個維度上,這個優勢讓它們與其他方法相比,捕捉到更多的收益。也就是說,一個新的認識市場的角度才能帶來alpha。

㈢ 量化分析的量化投資策略

量化投資技術幾乎覆蓋了投資的全過程,包括量化選股、量化擇時、股指期貨套利、商品期貨套利、統計套利、演算法交易,資產配置,風險控制等。
1·量化選股
量化選股就是採用數量的方法判斷某個公司是否值得買入的行為。根據某個方法,如果該公司滿足了該方法的條件,則放入股票池,如果不滿足,則從股票池中剔除。量化選股的方法有很多種,總的來說,可以分為公司估值法、趨勢法和資金法三大類
2·量化擇時
股市的可預測性問題與有效市場假說密切相關。如果有效市場理論或有效市場假說成立,股票價格充分反映了所有相關的信息,價格變化服從隨機遊走,股票價格的預測則毫無意義。眾多的研究發現我國股市的指數收益中,存在經典線性相關之外的非線性相關,從而拒絕了隨機遊走的假設,指出股價的波動不是完全隨機的,它貌似隨機、雜亂,但在其復雜表面的背後,卻隱藏著確定性的機制,因此存在可預測成分。
3·股指期貨套利
股指期貨套利是指利用股指期貨市場存在的不合理價格,同時參與股指期貨與股票現貨市場交易,或者同時進行不同期限,不同(但相近)類別股票指數合約交易,以賺取差價的行為,股指期貨套利主要分為期現套利和跨期套利兩種。股指期貨套利的研究主要包括現貨構建、套利定價、保證金管理、沖擊成本、成分股調整等內容。
4·商品期貨套利
商品期貨套利盈利的邏輯原理是基於以下幾個方面 :(1)相關商品在不同地點、不同時間對應都有一個合理的價格差價。(2)由於價格的波動性,價格差價經常出現不合理。(3)不合理必然要回到合理。(4)不合理回到合理的這部分價格區間就是盈利區間。
5·統計套利
有別於無風險套利,統計套利是利用證券價格的歷史統計規律進行套利,是一種風險套利,其風險在於這種歷史統計規律在未來一段時間內是否繼續存在。統計套利在方法上可以分為兩類,一類是利用股票的收益率序列建模,目標是在組合的β值等於零的前提下實現alpha 收益,我們稱之為β中性策略;另一類是利用股票的價格序列的協整關系建模,我們稱之為協整策略。
期權套利
期權套利交易是指同時買進賣出同一相關期貨但不同敲定價格或不同到期月份的看漲或看跌期權合約,希望在日後對沖交易部位或履約時獲利的交易。期權套利的交易策略和方式多種多樣,是多種相關期權交易的組合,具體包括:水平套利、垂直套利、轉換套利、反向轉換套利、跨式套利、蝶式套利、飛鷹式套利等。
7·演算法交易
演算法交易又被稱為自動交易、黑盒交易或者機器交易,它指的是通過使用計算機程序來發出交易指令。在交易中,程序可以決定的范圍包括交易時間的選擇、交易的價格、甚至可以包括最後需要成交的證券數量。根據各個演算法交易中演算法的主動程度不同,可以把不同演算法交易分為被動型演算法交易、主動型演算法交易、綜合型演算法交易三大類。
8·資產配置
資產配置是指資產類別選擇,投資組合中各類資產的適當配置以及對這些混合資產進行實時管理。量化投資管理將傳統投資組合理論與量化分析技術的結合,極大地豐富了資產配置的內涵,形成了現代資產配置理論的基本框架。它突破了傳統積極型投資和指數型投資的局限,將投資方法建立在對各種資產類股票公開數據的統計分析上,通過比較不同資產類的統計特徵,建立數學模型,進而確定組合資產的配置目標和分配比例。

㈣ 如何理解量化選股和量化擇時之間的關系

所謂量化投資,就是通過定量或統計的方法,不斷地從歷史數據中挖掘有效的規律並在投資行為中加以利用,甚至通過計算機程序自動執行下單的動作。也就是說,量化投資方法是靠「概率」取勝,其最鮮明的特徵就是可定量化描述的模型、規律或策略。

對於股票市場,量化投資主要包括量化選股、量化擇時、演算法交易、股票組合配置、資金或倉位管理、風險控制等。我們這里重點聊一聊量化選股和擇時策略,其中前者解決哪些股票值得關注或持有,後者解決何時買入或賣出這些股票,以期在可承受的風險程度下,獲得盡可能多的收益。

第一階段:選股
選股的目標是從市場上所有可交易的股票中,篩選出適合自己投資風格的、具有一定安全邊際的股票候選集合,通常稱為「股票池」,並可根據自己的操作周期或市場行情變化,不定時地調整該股票池,作為下一階段擇時或調倉的基礎。

量化選股的依據可以是基本面,也可以是技術面,或二者的結合。常用的量化選股模型舉例如下:
1多因子模型
多因子模型:採用一系列的「因子」作為選股標准,滿足這些因子的股票將作為候選放入股票池,否則將被移出股票池。這些因子可以是一些基本面指標,如 PB、PE、EPS 增長率等,也可以是一些技術面指標,如動量、換手率、波動率等,或者是其它指標,如預期收益增長、分析師一致預期變化、宏觀經濟變數等。多因子模型相對來說比較穩定,因為在不同市場條件下,總有一些因子會發生作用。
2板塊輪動模型
板塊輪動模型:一種被稱作風格輪動,它是根據市場風格特徵進行投資,比如有時市場偏好中小盤股,有時偏好大盤股,如果在風格轉換的初期介入,則可以獲得較大的超額收益;另一種被稱作行業輪動,即由於經濟周期的原因,總有一些行業先啟動行情,另有一些(比如處於產業鏈上下游的)行業會跟隨。在經濟周期過程中,依次對這些輪動的行業進行配置,比單純的買入持有策略有更好的效果。
3一致性預期模型
一致性預期模型:指市場上的投資者可能會對某些信息產生一致的看法,比如大多數分析師看好某一隻股票,可能這個股票在未來一段時間會上漲;如果大多數分析師看空某一隻股票,可能這個股票在未來一段時間會下跌。一致性預期策略就是利用大多數分析師的看法來進行股票的買入賣出操作。
與此類似的思路還有基於股吧、論壇、新聞媒體等對特定股票提及的輿情熱度或偏正面/負面的消息等作為依據。還有一種思路是反向操作,迴避羊群效應(物極必反),避免在市場狂熱時落入主力資金出貨的陷阱。

4資金流模型
資金流模型:其基本思想是根據主力資金的流向來判斷股票的漲跌,如果資金持續流入,則股票應該會上漲,如果資金持續流出,則股票應該下跌。所以可將資金流入流出情況編製成指標,利用該指標來預測未來一段時間內股票的漲跌情況,作為選股依據。
第二階段:擇時
擇時的目標是確定股票的具體買賣時機,其依據主要是技術面。取決於投資周期或風格(例如中長線、短線,或超短線),擇時策略可以從比較粗略的對股票價位相對高低位置的判斷,到依據更精確的技術指標或事件消息等作為信號來觸發交易動作。

一般來說,擇時動作的產生可以基於日K線(或周K線),也可以基於日內的小時或分鍾級別K線,甚至tick級的分時圖等。具體的量化擇時策略可以分為如下幾種:
1趨勢跟蹤型
趨勢跟蹤型策略適用於單邊上升或單邊下降(如果可做空的話)的行情——當大盤或個股出現一定程度的上漲和一定程度的下跌,則認為價格走勢會進一步上漲或下跌而做出相應操作(買入->持有->加倉->繼續持有->賣出)。

2高拋低吸型
高拋低吸型:高拋低吸型策略適用於震盪行情——當價格走勢在一定范圍的交易區間(箱形整理)或價格通道(平行上升或下降通道)的上下軌之間波動時,反復地在下軌附近買入,在上軌附近賣出,賺取波段差價利潤(下軌買入->上軌賣出->下軌買入->上軌賣出->…)。
3橫盤突破型
橫盤突破型:價格走勢可能在一定區間范圍內長時間震盪,總有一天或某一時刻走出該區間,或者向上突破價格上軌(如吸籌階段結束開始拉升),或者向下突破價格下軌(如主力出貨完畢,或向下一目標價位跌落以尋找有效支撐),此時行情走勢變得明朗。
橫盤突破型策略就是要抓住這一突破時機果斷開多或開空,以期用最有利價位和最小風險入場,獲得後續利潤(空倉或持倉等待機會->突破上軌則買入或平空/突破下軌則賣出或做空)。

常見的趨勢跟蹤型策略有:短時和長時移動均線交叉策略,均線多頭排列和空頭排列入場出場策略,MACD的DIFF和DEA線交叉策略等。如下圖所示:

常見的高拋低吸型策略一般通過震盪類技術指標,如KDJ、RSI、CCI等,來判斷價格走勢的超賣或超賣狀態,或通過MACD紅綠柱或量能指標與價格走勢間的背離現象,來預測波動區間拐點的出現。如下圖所示:

常見的橫盤突破策略包括布林帶上下軌突破、高低價通道突破、Hans-123、四周法則等。如下圖所示:

必須要強調的是,趨勢跟蹤型策略和高拋低吸型策略適用於完全不同的市場行情階段——如果在單邊趨勢中做高拋低吸,或是在震盪行情中做趨勢跟蹤,則可能會造成很大虧損。因此,對這二者的使用,最關鍵的是,第一要盡量准確地判斷當前行情類型,第二是要時刻做好止損保護(和及時止盈)。

總結一下:
在瘋牛秘籍和瘋牛形態系列產品中,提供了大量對股市規律的揭示、以及基於這些規律制定的量化策略,例如基於各類公告事件、資金動向、技術指標等制定的策略和規律,以及次日機會、底部形態反轉等對應的交易時機。
這些實時動態的策略可為投資者的選股和擇時操作提供高效的、有價值的參考。

㈤ 量化分析是什麼意思

量化分析就是將一些不具體,模糊的因素用具體的數據來表示,從而達到分析比較的目的。

量化分析可以幫助我們更加方便和直觀地衡量風險和收益,但需要強調指出的是,美國華爾街頂級量化金融大師、哥倫比亞大學著名教授伊曼紐爾·德曼,在《數學建模如何誘騙了華爾街》一文中,毫無忌諱地承認:我們根本不可能(通過數理分析方法)發明出一個能夠預測股票價格將會如何變化的模型;如果我們相信人類行為可完全遵守數學法則,從而把有著諸多限制的模型與理論相混淆的話,其結果肯定會是一場災難。

(5)股票的量化分析關系擴展閱讀:

量化投資技術幾乎覆蓋了投資的全過程,包括量化選股、量化擇時、股指期貨套利、商品期貨套利、統計套利、演算法交易,資產配置,風險控制等。

量化分析法將對通過定性風險分析排出優先順序的風險進行量化分析。盡管有經驗的風險經理有時在風險識別之後直接進行定量分析,但定量風險分析一般在定性風險分析之後進行。定量風險分析一般應當在確定風險應對計劃時再次進行,以確定項目總風險是否已經減少到滿意。

㈥ 股票市場的大數據量化分析是怎麼做的

會做的都不會和你說的,簡單來說就是收集數據,實現大數據ai

㈦ 什麼是股票量化交易

量化交易是指以先進的數學模型替代人為的主觀判斷,利用計算機技術從龐大的歷史數據中海選能帶來超額收益的多種「大概率」事件以制定策略,極大地減少了投資者情緒波動的影響,避免在市場極度狂熱或悲觀的情況下作出非理性的投資決策。

閱讀全文

與股票的量化分析關系相關的資料

熱點內容
成都銀行歷史股票行情 瀏覽:552
600420股票行情 瀏覽:634
股票配資實盤趙大牛證券 瀏覽:148
兩個手機查同一個股票帳號 瀏覽:541
手機股票app顯示自選收益 瀏覽:332
怎麼辦理境外銀行卡炒股 瀏覽:622
貝特科技股票行情 瀏覽:691
場外期權股票群套路 瀏覽:795
公司股東買入自家股票 瀏覽:141
舉報公司開發股票軟體 瀏覽:387
股票突破分析 瀏覽:590
股票中筆數是買還是賣 瀏覽:423
炒股軟體中如何看籌 瀏覽:265
股票交易一些什麼費用 瀏覽:228
股票分析師電影下載 瀏覽:507
平安證券不能買滬深股票 瀏覽:110
買股票打新神推薦 瀏覽:987
買股票不虧本 瀏覽:505
保德信金融的股票行情 瀏覽:376
香港貿易公司股票本 瀏覽:181