A. 怎样用 Python 写一个股票自动交易的程序
概率炒股法:
下面方法买涨不买跌,同时避免被套,缺点,手续费比较高,但完全可以吃完整个牛市,熊市不会被套。
用python获取股票价格,如tushare,如果发现股票当天涨幅在大盘之上(2点30到2点50判断),买入持有一天,下跌当天就别买,你可以用概率论方法,根据资金同时持有5支,10支或20支,这样不怕停盘影响,理论上可以跑赢大盘。好处:避免人为冲动,缺点手续费高
还有一种是操作etf,如大盘50etf,etf300,中小板etf,创业板etf,当天2.30分判断那个etf上涨就买入那支,买入涨幅最大的,不上涨什么都不买,持有一天,第二天上午判断一下,如果下跌超过2%卖掉。好处:不会踩地雷,缺点:涨随大盘,我比较推荐这个方法,外围的风险比较小。
具体的python程序我有,比上面复杂,有止赢止损位,资金管理,监视管理,我用在实盘当中,自动化下单也已解决。
我觉得程序的成败不在一日之功,在于长期稳定赚钱,如运行十年,过多的数据分析也无意义,因为预测未来永远是一个概率问题,不是百分之百确定的,如果你的程序能在长时间多次数上战胜市场,你的程序就能趋向大数定理。
否则一时的回撤会让你停止程序自动执行,而无法趋向大数定理中的稳定概率。
如果有一个程序能百分之99确定,那么基本上肯定是分析了内幕交易数据,和徐x一样,每次重仓一支股,这种手法应该是得到了内幕,也就不需要什么程序来交易了。
巴菲特的交易模式实质上也是内幕交易的一种,因为他靠的是外在分析,实地考查,估计这是寻找内幕的手段,现在做大了,这种效果就不灵了,收益也下降了,美国经济也下滑了,所以巴菲特的未来是必定是暗淡的,因为内幕交易的池子有限,资金量大了不好操作。
想想如果巴菲特生在苏联,印度,日本等等其他国家,他可能在街头要饭,美国二战后经济环境加倾向内幕造就了他,而不是炒股技术有多神。所以巴菲特不屑于程序化交易。
巴菲特及不少美国式的股神实际上是幸存者偏差造成的,你想想苏联的股神在那里?为什么一个都没有?(“沉默的数据”、“死人不会说话”)
我觉得未来真正能成股神必定是程序,不是人,因为一个好的程序策略可以用一辈子,实现长期稳定增长,当然前提是社会经济环境稳定,不会出现类似苏联的动乱,也不会出现日本式的恶性通胀(对货币m2有点担心)。
太多的股票让股民每天沉浸在选股的游戏中,选股造就了券商的行情软件,实际上很多数据都是没有用的,所有的关键是按操作方法永远执行下去才能趋向稳定概率,否则今天换一种明天换一种方法,今天按kdj,明天按macd,后天按boll,大后天按ddx,大大后天按自编指标,多条件选股,最后钱都交手续费或止损不及时被套牢了。这时券商收佣金的目的也就达到了,每年券商收的佣金比股市分红要高。不管行情如何,只要多请几个股评员,总有方向说对的,玩个概率游戏让大家频繁交易,券商的收入只会增不会降。所以千万别信股评,玩的是概率游戏,如同预测硬币的正反,请十个股评师必定有个能预测三次正确的神股评。你信这个神股评,后面可能是三次都不准,呵呵。所以券商和行情软件总会在收盘或午休时弹出各种消息或评价,说实在的这种东西没有一分钱的价值。可能早就写好了上涨的说法是模块a,下跌的说法是模板b,平市的说法是模板c,只是填上当天数据即可,都是八股文,都是马后炮,一样的事件上午说成是上涨理由,下午说成是下跌理由。
程序的策略经过测试后的关键在于稳定执行,长期稳定执行,长期长期稳定稳定执行执行,重要的事说三遍。
人性无法战胜的弱点是执行力,小学生都懂的天天向上,每日进步,世间有几人能做到?而稳定几十年执行更是难上加难,如同背英语单词一样,理论上一天背一百个,一百天就可以一万词,但十年,二十年过去了,你可能还是三千词以下。
用程序的目的就是百分之百执行到位,没有折扣,真正战胜人性的弱点,和t+1没有关系。
另外通过一定方法降低手续费也可以使你的资金活得更久,如把上面的日模型改为周或月模型。
B. 有没有会用Python编写一个简单的建模股票价格的小程序能够对股票数据进行简单预测即可!求助!
虽然懂python 但是不懂股票,
采用random()可以么,哈哈
C. 怎么用python计算股票
作为一个python新手,在学习中遇到很多问题,要善于运用各种方法。今天,在学习中,碰到了如何通过收盘价计算股票的涨跌幅。
第一种:
读取数据并建立函数:
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import spline
from pylab import *
import pandas as pd
from pandas import Series
a=pd.read_csv('d:///1.csv',sep=',')#文件位置
t=a['close']
def f(t):
s=[]
for i in range(1,len(t)):
if i==1:
continue
else:
s.append((t[i]-t[i-1])/t[i]*100)
print s
plot(s)
plt.show()
f(t)
第二种:
利用pandas里面的方法:
import pandas as pd
a=pd.read_csv('d:///1.csv')
rets = a['close'].pct_change() * 100
print rets
第三种:
close=a['close']
rets=close/close.shift(1)-1
print rets
总结:python是一种非常好的编程语言,一般而言,我们可以运用构建相关函数来实现自己的思想,但是,众所周知,python中里面的有很多科学计算包,里面有很多方法可以快速解决计算的需要,如上面提到的pandas中的pct_change()。因此在平时的使用中应当学会寻找更好的方法,提高运算速度。
D. python获取一只股票的行情,为什么出现这么多问题
首先,你要确定下你的库文件是否安装正常,测试方法,就是在交互模式下测试。
其次,不要用别名,在试试。
希望能帮到你。。。。
E. python 怎么实现股价xo图
c = [-10,-5,0,5,3,10,15,-20,25] # 返回最小值 >>> n=c.index(min(c)) >>> n 7 >>> c[7] -20 # 返回最大值 print c.index(max(c))
F. 如何用python获取股票数据
在Python的QSTK中,是通过s_datapath变量,定义相应股票数据所在的文件夹。一般可以通过QSDATA这个环境变量来设置对应的数据文件夹。具体的股票数据来源,例如沪深、港股等市场,你可以使用免费的WDZ程序输出相应日线、5分钟数据到s_datapath变量所指定的文件夹中。然后可使用Python的QSTK中,qstkutil.DataAccess进行数据访问。
G. 如何用python 取所有股票一段时间历史数据
各种股票软件,例如通达信、同花顺、大智慧,都可以实时查看股票价格和走势,做一些简单的选股和定量分析,但是如果你想做更复杂的分析,例如回归分析、关联分析等就有点捉襟见肘,所以最好能够获取股票历史及实时数据并存储到数据库,然后再通过其他工具,例如SPSS、SAS、EXCEL或者其他高级编程语言连接数据库获取股票数据进行定量分析,这样就能实现更多目的了。
H. Python 获取股价的代码怎么写
网页上的吗
还是某个服务器上的
I. 怎样用python处理股票
用Python处理股票需要获取股票数据,以国内股票数据为例,可以安装Python的第三方库:tushare;一个国内股票数据获取包。可以在网络中搜索“Python tushare”来查询相关资料,或者在tushare的官网上查询说明文档。
J. 如何利用Python预测股票价格
预测股票价格没有意义。
单支股票价格,多股组合,大盘这些都可以使用神经网络来学习,02年就做过了,涨跌预测平均能达到54%到57%的准确率,但是只能定性,无法定量,因此,在扣除印花税之后无利可图。
纯粹使用股票交易数据来预测并保证总体获利不是程序能办到的,人也办不到。
目前世界上最先进的炒股机器也只能利用网络时差那微不可计的零点几秒在欧洲与美国证券间倒来倒去,那套系统研发费用数千万,硬件(主要是独立光缆)费用以亿计。