① 蒙特卡洛模拟法
蒙特卡洛模拟技术,是用随机抽样的方法抽取一组满足输入变量的概率分布特征的数值,输入这组变量计算项目评价指标,通过多次抽样计算可获得评价指标的概率分布及累计概率分布、期望值、方差、标准差,计算项目可行或不可行的概率,从而估计项目投资所承担的风险。
蒙特卡洛模拟的步骤如下:
第一步,通过敏感性分析,确定风险变量。
第二步,构造风险变量的概率分布模型。
第三步,为各输入风险变量抽取随机数。
第四步,将抽得的随机数转化为各输入变量的抽样值。
第五步,将抽样值组成一组项目评价基础数据。
第六步,根据基础数据计算出评价指标值。
第七步,整理模拟结果所得评价指标的期望值、方差、标准差和它的概率分布及累计概率,绘制累计概率图,计算项目可行或不可行的概率。
蒙特卡洛模拟程序如图7-26所示。
图7-26 蒙特卡洛模拟程序图
【实训Ⅷ】某项目建设投资为1亿元,流动资金1000 万元,项目两年建成,第三年投产,当年达产。不含增值税年销售收入为5000万元,经营成本2000万元,附加税及营业外支出每年为50万元,项目计算期12 a。项目要求达到的项目财务内部收益率为15%,求内部收益率低于15%的概率。
由于蒙特卡洛模拟的计算量非常大,必须借助计算机来进行。本案例通过手工计算,模拟20次,主要是演示模拟过程。
(1)确定风险变量。通过敏感性分析,得知建设投资、产品销售收入、经营成本为主要风险变量。流动资金需要量与经营成本线性相关,不作为独立的输入变量。
(2)构造概率分布模型。建设投资变化概率服从三角形分布,其悲观值为1.3亿元、最大可能值为1亿元、乐观值为9000万元,如图7-27所示。年销售收入服从期望值为5000万元、σ=300万元的正态分布。年经营成本服从期望值为2000万元、σ=100 万元的正态分布。
图7-27 投资三角形分布图
建设投资变化的三角形分布的累计概率,见表7-16及图7-27所示。
表7-16 投资额三角形分布累计概率表
(3)对投资、销售收入、经营成本分别抽取随机数,随机数可以由计算机产生,或从随机数表中任意确定起始数后,顺序抽取。本例从随机数表(表7-20)中抽取随机数。假定模拟次数定为k=20,从随机数表中任意从不同地方抽取三个20 个一组的随机数,见表7-17。
表7-17 输入变量随机抽样取值
(4)将抽得的随机数转化为各随机变量的抽样值。
这里以第1组模拟随机变量产生做出说明。
1)服从三角形分布的随机变量产生方法。
根据随机数在累计概率表(表7-16)或累计概率图(图7-28)中查取。投资的第1个随机数为48867万元,查找累计概率0.48 867所对应的投资额,从表7-16中查得投资额在10300与10600之间,通过线性插值可得
第1个投资抽样值=10300+300×(48867-39250)/(52000-39250)=10526万元
2)服从正态分布的随机变量产生方法。
从标准正态分布表(表7-21)中查找累计概率与随机数相等的数值。例如销售收入第1个随机数06242,查标准正态分布表得销售收入的随机离差在-1.53与-1.54之间,经线性插值得-1.5348。
图7-28 投资的累计概率分布图
第1个销售收入抽样值=5000-1.5348×300≈4540万元。
同样,经营成本第一个随机数66 903相应的随机变量离差为0.4328,第一个经营成本的抽样值=2000+100×0.4328=2043万元。
3)服从离散型分布的随机变量的抽样方法。
本例中没有离散型随机变量。另举例如下,据专家调查获得的某种产品售价的概率分布见表7-18。
表7-18 某种产品售价的概率分布
根据上表绘制累计概率如图7-29所示。
若抽取的随机数为43252,从累计概率图纵坐标上找到累计概率为0.43252,划一水平线与累计概率折线相交的交点的横坐标值125元,即是售价的抽样值。
(5)投资、销售收入、经营成本各20个抽样值组成20组项目评价基础数据。
(6)根据20组项目评价基础数据,计算出20 个计算项目评价指标值,即项目财务内部收益率。
(7)模拟结果达到预定次数后,整理模拟结果按内部收益率从小到大排列并计算累计概率,见表7-19所示。
从累计概率表可知内部收益率低于15%的概率为15%,内部收益率高于15%的概率为85%。
图7-29 售价累计概率曲线
表7-19 蒙特卡洛模拟法累积概率计算表
①每次模拟结果的概率=1/模拟次数。
② 怎么用Excel做蒙特卡洛模拟
进行频度统计。首先选中与总工期相对应的频度下面的单元格D2:D23,然后输入公式“=FREQUENCY(A2:A101,C2:C23)”,然后按下Ctrl+Shift+Enter。如此会计算出模拟出来各个总工期的发生次数。
③ 简述二叉树期权定价模型的基本原理和方法+借助蒙特洛模拟技术如何实现
二叉树期权定价模型是一种常用的期权定价方法,它基于期权价格的二叉树模型,通过对二叉树的构建和模拟,计算出期权的理论价格。二叉树期权定价模型的衡饥基本原理如下:
1. 构建二叉树:将期权的时间价值和价格看作一个二元变量,构建出一个二叉树模型。二叉树模型由左右两个子节点构成,左子节点表示期权价格为0的状态,右子节点表示期权价格为到期日价格的状态。
2. 计算期权价格:根据二叉树模型的构建,对二叉树进行模拟,计算出期权在每个时间节点上的价格。在每个时间节点上,期权的价格等于该节点的左子节点的价格加上该节点的右子节点的价格。
3. 计算理论价格:在每个时间节点上,将期权的价格进行累加,得到期权在整个时间段模码内的理论价格。
4. 检验理论价格的合理性:通过检验理论价格与实际价格之间的差异,确定二叉树期权定价模型的准确性和可靠性。
二叉树期权定价模型的实现需要借助蒙特卡洛模拟技术。蒙特卡洛模拟是一种基于随机抽样的计算方法,通过对大量随机变量的随机抽样,计算出每个可能结果的概率分布,进而进行模拟和预测。
在二叉树期权定价模型中,蒙特卡洛模拟技术可以用来模拟期权价格的二旦拦哪叉树模型。具体的实现方法如下:
1. 构建二叉树模型:根据期权的基本要素,构建出一个二叉树模型。
2. 随机抽样:对二叉树进行随机抽样,生成一个随机数序列。
3. 模拟和预测:根据随机数序列,对二叉树进行模拟和预测,计算出每个时间节点上的期权价格。
4. 检验理论价格:对每个时间节点上的期权价格进行累加,计算出期权在整个时间段内的理论价格,并与实际价格进行比较,检验模型的准确性和可靠性。