Ⅰ 什么是蒙特卡洛模拟( Monte Carlo simulation)
蒙特卡洛模拟又称为随机抽样或统计试验方法,属于计算数学的一个分支,它是在上世纪四十年代中期为了适应当时原子能事业的发展而发展起来的。传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问题与实际非常符合,可以得到很圆满的结果。
蒙特卡洛随机模拟法的原理是当问题或对象本身具有概率特征时,可以用计算机模拟的方法产生抽样结果,根据抽样计算统计量或者参数的值;随着模拟次数的增多,可以通过对各次统计量或参数的估计值求平均的方法得到稳定结论。
蒙特卡洛随机模拟法 - 实施步骤抽样计算统计量或者参数的值;随着模拟次数的增多,可以通过对各次统计量或参数的估计值求平均的方法得到稳定结论。
基本原理思想
当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用它们作为问题的解。这就是蒙特卡罗方法的基本思想。
蒙特卡罗方法通过抓住事物运动的几何数量和几何特征,利用数学方法来加以模拟,即进行一种数字模拟实验。它是以一个概率模型为基础,按照这个模型所描绘的过程,通过模拟实验的结果,作为问题的近似解。可以把蒙特卡罗解题归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。
Ⅱ 【悬赏】一个matlab累计求次数的问题,大佬跪求帮忙啊啊啊
clear all
t=1;r=0.056;deltaT=1/50;sigmal=0.02155;
A=1;
s1=[2.474*ones(10000,1) zeros(10000,50)];
a=0,b=0,c=0;
for i=1:50
x=randn(10000,1);
path=A*x';
s1(:,i+1)=s1(:,i)+r*deltaT*s1(:,i )+sigmal* deltaT^0.5*(s1(:,i ).*path(1,:)');
if s1(:,i+1)<2.67192
a=a+1;
elseif s1(:,i+1)<2.78325
b=b+1;
else
c=c+1;
end
end
Ⅲ 下面的问题用蒙特卡洛模拟如何实现啊,想了解个基本过程
蒙特卡洛的基本原理就是通过计算机的计算能力进行大量实验。实验样本到达一定数量后,能得出接近结果的数值解。这个题目可以通过计算直接得出结果接近于正态分布,但可以用excel简单的说明下蒙特卡洛方法。
用excel的步骤基本如下:
1、第一列拉出各周期编号1至1000。(假设都是从第一行开始)
2、第二列作为随机种子,B1输入=rand()
3、第三列为根据既定价格及概率p值(回答里写的p值,但输入时应该是具体数值)判断购买与否,C1输入=if(B1<p,1,0)
4、第四列、五列展示周期开始、结束时剩余货物,即D1为50,E1输入=max(D1-C1,0),而后D2输入=E1,E2输入=max(D1-C1,0)。
5、每一列对应下拉(四、五列从第二行开始下拉)。
按这个步骤的话,就得出一个既定价格下,剩余产品数量随时间变化的表。
至于最后的利润也是可以根据这个算的。
不过以上的过程是基于对每个周期买的概率进行1000次蒙特卡洛模拟。
如果模拟的是这1000次周期的结果,那就直接用一列到位,对多列的结果进行统计。
第1列仍然编号,第2列直接整合上述234步,表示该周期初始货物存货,第1行50,第二行B2输入=IF(RAND()<p,MAX(B1-1,0),B1),这里用的p仍然是数值的表示,比如说概率是0.7,实际应该输入=IF(RAND()<0.7,MAX(B1-1,0),B1)
下拉,出现到1000步的初始货物存货,根据要求实际上是1000步后的结果,可以拉到1001行。这就用单列表示了整个货物变化过程,如果想要更多1000步的不同结果,把整个b列右拉即有更多结果。
Ⅳ 依据远期,期货,互换,期权等定价方法来描述金融衍生品的定价规律
在探讨金融衍生产品定价思路的优缺点之前,让我们先来缅怀一下30年来金融衍生品发展的里程碑式事件:
1973年,Black、Scholes和Merton分别提出了期权定价的Black-Scholes公式,这一模型解决了“或有剩余索取权”的定价疑难,为衍生品市场的迅速发展扫清了最大的障碍,Scholes和Merton也因此获得1997年的诺贝尔经济学奖。
1985年,McConnell和Schwartz提出了LYONs(本质是可转换债券)的一个定价模型,为对冲基金的广阔发展提供了大量可供套利的沃土。(可转换债券是对冲基金最常交易的产品)
1989年,Schwartz提出了抵押贷款证券化产品的定价模型,成为资产证券化飞速发展的起点,后来出现的CDO、CDO2、CDOn、CMO等产品成为此次次贷危机的金融核弹。
90年代之后出现了引发金融危机的另一颗威力更大的“小男孩”核弹——信用违约掉期(CDS),2000年,Hull和White的定价模型更是便利了这种金融衍生产品的急速增长。
金融危机的反思
金融衍生产品的出现和发展本应是为了控制、分散、转移风险的金融工具,奈何最后成为一场危机的导火索,值得人人深思。随着衍生产品的不断开发,越来越多的数学工具被加以应用,包括偏微分方程、概率统计、随机过程、鞅论、测度论等;越来越多的计算机算法被加以借鉴,如,牛顿迭代、蒙特卡洛模拟等。
这一切似乎让定量分析师们(Quants)将金融工程变成了“工程”,而不再更多的追究其“金融”本质。设计者一开始就不假思索的随机游走(random walk)和无套利均衡,基于这一基础开始辛勤的添砖加瓦,修建出各种美轮美奂的金融衍生产品。!!!!!!!!此为金融衍生品的定价规律即基本规律是复制 即使用市场上已有产品组合达到相同的风险收益 组合的价格就是衍生品价格!!!!!!!!!!!!!
作为一个看客,我不认为此次次贷危机和金融危机是定量分析师们有意所为,我相信宽客们的素质也绝对不会这样。但客观讲,定量分析师们不得不负客观上的责任,即在一个不坚实的地基上修建金融衍生品的精妙房屋。这不坚实的地基便是随机游走和无套利均衡。金融资产价格的变化多端使得我们简单的认为其价格服从随机游走,但殊不知,股票的几何布朗运动,利率、波动率的均值回复运动并不能完整的刻画资产价格的走势,特别是对极端情况的刻画。
而所谓无套利均衡,是指如果几个市场之间存在无风险的套利机会,套利力量将会推动几个市场重建均衡,但它仅仅是一个局部均衡,三个市场之间的无套利均衡并不意味着其定出来的价值是真实的、稳定的,可能三个市场均是300%的泡沫,它仍然是无套利均衡的,但不是一般均衡的,这样的价格是会破裂的,最好的佐证便是这次次贷危机。
未来的衍生品定价技术如何发展?这是一个可以再获诺贝尔奖的命题。是继续技术化的“工程”道路,不假思索的无套利定价?还是向一般均衡靠近,兼顾到其标的金融资产的内生价值?当然毫无疑问,前者易,后者难。前者只需要简单的把标的资产价格作为一个外生变量,通过对相关资产价格比较进行定价,而不考虑行为主体的偏好和效用函数。后者需要考虑标的资产价值的合理性,在给衍生品定价的同时,考虑宏观经济变量的理性预期均衡。一代奇才Black晚年致力于解决它,但不幸早逝,或许一般均衡是“上帝的均衡”,可望不可及。
但此次金融危机的深刻教训,让我们不得不重新思考,定价是否应该尽可能的考量到外生的宏观因素,向一般均衡靠近,尽管它永远不能达到。毕竟这个真实的世界不是完全随机游走。事实上,金融危机后,很多学者已经开始在向这个方向靠近。(作者系汇丰集团中国首席经济学家)