导航:首页 > 价格看点 > r语言股票价格预测

r语言股票价格预测

发布时间:2023-08-13 17:10:24

『壹』 如何在r语言中抓取股票数据并分析论文

用quantomd包
然后getsymbols函数

分析论文 要看你研究方向
如果是看影响因素 一般回归就行
如果看股票波动和预测 可能需要时间序列

『贰』 R语言怎么把股票日收盘价转换成对数收益率

知道一系列收盘价向量X,length=1000,求对数收益率的R语言代码
acf(int[,2], lag.max = 15,type = "correlation", plot = TRUE,main='int monthly

acf(int.l[,2], lag.max = 15,type = "correlation", plot = TRUE,main='int monthly
log return')

Box.test(int[,2], lag = 5, type = "Ljung-Box")
Box.test(int[,2], lag = 10, type = "Ljung-Box")
Box.test(int.l[,2], lag = 5, type = "Ljung-Box")
Box.test(int.l[,2], lag = 10, type = "Ljung-Box")

运行结错误办

> int <- read.table("d-intc7208.txt", head=T)
错误于file(file, "rt") : 打链结
外: 警告信息:
In file(file, "rt") :
打文件'd-intc7208.txt': No such file or directory

+ acf(int.l[,2], lag.max = 15,type = "correlation", plot = TRUE,main='int monthly
错误: 意外符号 in:
"
acf(int.l[,2], lag.max = 15,type = "correlation", plot = TRUE,main='int"
> log return')
错误: 意外符号 in "log return"

『叁』 R语言得到了模型,怎么预测,比如我要预测2013时候的数据

  1. 预测的话,应该用接下来的时间,所以应该是预测2014,2015....

    程序如下:

    new<-data.frame(year=2014)

    lm.pred<-predict(z,new,interval="prediction",level=0.95)

    lm.pred

    解释:第一行表示输入新的点year=2014,注意,即使就一个点,也要采用数据框结构;第二行的函数predict()给出相应的预测值,参数interval="prediction"表示同时要给出相应的置信区间,参数level=0.95表示相应的概率为0.95.这个参数也可以不写,因为它的缺省值为0.95.

  2. 你提到的2013的数据不是预测,而是拟合。我们可以通过得到的模型对原来的year这个变量的数据进行拟合。

    程序如下:

    fit<-fitted(z)

    fit

    得到的就是在你得到的模型下2006-2013这8年的拟合值了。

    希望能对你有所帮助~

『肆』 学习R 语言对金融分析人士有何意义

学习 R 语言对金融分析人士有何意义?

总之,多学一点东西总是没错的。至于,学了之后会有哪些好处呢,我们就来看看专业人士有什么看法。



总之,学习了还是有很多好处的,学到的东西是你的了,不是吗?

『伍』 什么是BP神经网络

误差反向传播(Error Back Propagation, BP)算法
1、BP算法的基本思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成。
1)正向传播:输入样本->输入层->各隐层(处理)->输出层
注1:若输出层实际输出与期望输出(教师信号)不符,则转入2)(误差反向传播过程)
2)误差反向传播:输出误差(某种形式)->隐层(逐层)->输入层
其主要目的是通过将输出误差反传,将误差分摊给各层所有单元,从而获得各层单元的误差信号,进而修正各单元的权值(其过程,是一个权值调整的过程)。
注2:权值调整的过程,也就是网络的学习训练过程(学习也就是这么的由来,权值调整)。
2、BP算法实现步骤(软件):
1)初始化
2)输入训练样本对,计算各层输出
3)计算网络输出误差
4)计算各层误差信号
5)调整各层权值
6)检查网络总误差是否达到精度要求
满足,则训练结束;不满足,则返回步骤2)
3、多层感知器(基于BP算法)的主要能力:
1)非线性映射:足够多样本->学习训练
能学习和存储大量输入-输出模式映射关系。只要能提供足够多的样本模式对供BP网络进行学习训练,它便能完成由n维输入空间到m维输出空间的非线性映射。
2)泛化:输入新样本(训练时未有)->完成正确的输入、输出映射
3)容错:个别样本误差不能左右对权矩阵的调整
4、标准BP算法的缺陷:
1)易形成局部极小(属贪婪算法,局部最优)而得不到全局最优;
2)训练次数多使得学习效率低下,收敛速度慢(需做大量运算);
3)隐节点的选取缺乏理论支持;
4)训练时学习新样本有遗忘旧样本趋势。
注3:改进算法—增加动量项、自适应调整学习速率(这个似乎不错)及引入陡度因子

『陆』 r语言arma-garch怎样预测

原文链接:http://tecdat.cn/?p=20015

本文将说明单变量和多变量金融时间序列的不同模型,特别是条件均值和条件协方差矩阵、波动率的模型。

均值模型

本节探讨条件均值模型。

iid模型

我们从简单的iid模型开始。iid模型假定对数收益率xt为N维高斯时间序列:

请注意,这也可以建模为ETS(A,N,N)状态空间模型:

plot(cbind(std_t, x_trn), main = "基于平方EWMA的包络")

乘法ETS

我们还可以尝试ETS模型的不同变体。例如,具有状态空间模型的乘性噪声版本ETS(M,N,N):

『柒』 股票价格的随机游走的含义

“随机游走”(random walk)是指基于过去的表现,无法预测将来的发展步骤和方向。应用到股市上,则意味着股票价格的短期走势不可预知,意味着投资咨询服务、收益预测和复杂的图表模型全无用处。在华尔街上,“随机游走”这个名词是个讳语,是学术界杜撰的一个粗词,是对专业预言者的一种侮辱攻击。若将这一术语的逻辑内涵推向极致,便意味着一只戴上眼罩的猴子,随意向报纸的金融版面掷一些飞镖,选出的投资组合就可与投资专家精心挑选出的一样出色。

阅读全文

与r语言股票价格预测相关的资料

热点内容
房地产知识 浏览:547
美股通用电气股票基金 浏览:272
股票场外配资虚拟盘 浏览:717
图文讲解股票软件 浏览:392
股票图盘边上买1什么意思 浏览:942
将回购的本公司股票注销分录 浏览:9
合发全球期权股股票代码 浏览:69
双林股份增发股票 浏览:834
战略投资蚂蚁股票基金 浏览:844
中体产业股份股票行情分析 浏览:612
银行买基金和股票买基金 浏览:753
疫情故事作文 浏览:784
狗狗币股票公司 浏览:364
张太 浏览:487
新赛股份股票行情雪球网 浏览:263
美联邦退休基金哪些股票 浏览:676
炒股记住几点 浏览:431
该怎样买股票 浏览:137
豪悦股份股票 浏览:391
股票和现货交易时间 浏览:59