导航:首页 > 价格看点 > 隐马尔可夫模型股票市场价格

隐马尔可夫模型股票市场价格

发布时间:2023-08-25 21:55:41

㈠ 01 隐马尔可夫模型 - 马尔可夫链、HMM参数和性质

先直白得讲性质: 当前的状态只和上一时刻有关,在上一时刻之前的任何状态都和我无关。我们称其 符合 马尔可夫性质。

下面是理论化的阐述:
设{X(t), t ∈ T}是一个 随机过程 ,E为其状态空间,若对于任意的t1<t2< ...<tn<t,任意的x1,x2,...,xn,x∈E,随机变量X(t)在已知变量X(t1)=x1,...,X(tn)=xn之下的条件分布函数只与X(tn)=xn有关,而与X(t1)=x1,...,X(tn-1)=xn-1无关,即条件分布函数 满足 下列等式,此性质称为 马尔可夫性 ;如果随机过程 满足 马尔可夫性,则该过程称为马尔可夫过程。

马尔可夫链 是指具有马尔可夫性质的随机过程。在过程中,在给定当前信息的情况下,过去的信息状态对于预测将来 状态 是无关的。

例子: 在今天这个时间点而言,过去的股价走势对我预测未来的股价是毫无帮助的。
PS:上面马尔可夫链中提到的 状态 ,在本例指的是 股价

在马尔可夫链的每一步,系统根据 概率分布 ,可以从一个状态变成另外一个状态,也可以保持当前状态不变。状态的改变叫做 转移 ,状态改变的相关概率叫做 转移概率

例子: 当前时间状态下的股价,可以转变成下一时刻的股价,股价的转变即 状态的改变 。这个状态现在可以上升(股价提高),状态也可以下降。我可以根据当前股票的价格去决定下一刻股价上升、下降、不变的概率。这种股价变动的概率称为 状态转移概率

马尔可夫链中的 三元素是 :状态空间S、转移概率矩阵P、初始概率分布π。

1、状态空间S - 例: S是一个集合,包含所有的状态 S 股价 ={高,中,低}

2、初始概率分布π - 例:
股价刚发行的时候有一个初始价格,我们认为初始价格为高的概率为50%,初始价格为中的概率是30%,初始价格为低的概率是20%。我们记股票价格的初始概率分布为:π=(0.5,0.3,0.2);对应状态:(高、中、低); 初始概率分布是一个向量 ,如果有n个状态,π是n维向量。

3、转移概率矩阵P - 例:
现在有个股价为中,下一个时刻状态转变的可能性有三种,中→高、中→低、中→中;将三种转变的概率。此外当前时刻也有股票的价格属于低,对应的转变可能包括低→高、低→低、低→中;即每种状态都有可能转变成其他的状态,若一共有n个状态,形成的 转移概率矩阵 应该是n×n阶矩阵。这里需要注意的是,股价从高→低,和低→高的概率是不同的。

设将天气状态分为晴、阴、雨三种状态,假定某天的天气状态只和上一天的天气状态有关,状态使用1(晴)、2(阴)、3(雨)表示,转移概率矩阵P如下:

第n+1天天气状态为j的概率为:

因此,矩阵P即为条件概率转移矩阵。矩阵P的第i行元素表示,在上一个状态为i的时候的分布概率,即每行元素的和必须为1。

隐马尔可夫模型(Hidden Markov Model, HMM)是一种统计模型,在语音识别、行为识别、NLP、故障诊断等领域具有高效的性能。

HMM是关于时序的概率模型,描述一个含有未知参数的马尔可夫链所生成的不可观测的状态随机序列,再由各个状态生成观测随机序列的过程。

HMM是一个双重随机过程---具有一定状态的隐马尔可夫链和随机的观测序列。

HMM随机生成的状态随机序列被称为状态序列;每个状态生成一个观测,由此产生的观测随机序列,被称为观测序列。

思考: z1,z2...,zn是 不可观测的状态,x1,x2,...xn是 可观测到的序列 ;不可观测的状态觉得可观测序列的值(z的取值决定x的取值);

1、在 z1、z2 不可观测 的情况下,x1和z2独立吗?x1和x2独立吗?

回答: 这个问题可以回顾之前的 贝叶斯网络 来理解。
首先z1,z2都是离散的值,但x1的值可能是离散的也可能是连续的。比如z是天气情况,每天天气的改变是离散的。x是因为天气而改变的一些其他状态,比如x=(地面是否潮湿、路上行人数量、雨伞销售数量...);
在z1和z2不可观测的情况下,x1和z2不独立,x1和x2也是不独立的。

2、 在 z1、z2可观测 的情况下,x1和z2独立吗?x1和x2独立吗?

回答: 在z1和z2可观测的情况下,因为x1和z2的取值只和z1有关,所以就独立了。同样在给定了z1和z2的情况下,x1和x2也独立。

请回顾贝叶斯网络中的独立性问题来思考这个问题。
04 贝叶斯算法 - 贝叶斯网络

回顾:
一般而言,贝叶斯网络的有向无环图中的节点表示随机变量,可以是可观察到的变量,或隐变量,未知参数等等。连接两个节点之间的箭头代表两个随机变量之间的因果关系(也就是这两个随机变量之间非条件独立);如果两个节点间以一个单箭头连接在一起,表示其中一个节点是“因”,另外一个节点是“果”,从而两节点之间就会产生一个条件概率值。

PS:每个节点在给定其直接前驱的时候,条件独立于其非后继。

HMM 由隐含状态S、可观测状态O、初始状态概率矩阵π、隐含状态转移概率矩阵A、可观测值转移矩阵B(又称为混淆矩阵,Confusion Matrix);

π和A决定了状态序列,B决定观测序列,因此HMM可以使用三元符号表示,称为HMM的三元素:

S可以统计历史出现的所有状态;
初始概率分布π,统计S中各个状态各自出现的概率作为我们的初始概率分布π向量值;

S是所有可能的状态集合,O是所有可能的观测集合:

I是长度为T的状态序列,Q是对应的观测序列:

S={下雨,阴天,晴天};O={地上干,地上湿}
I = {晴,雨,雨,阴,晴,阴}
Q={干,湿,湿,湿,干,干}

A是隐含状态转移概率矩阵:

其中aij是在时刻t处于状态si的条件下时刻t+1转移到状态sj的概率。
a 晴雨 = 某天是晴天条件下,下一天是雨天的概率。 (某一时刻→下一时刻)

B是可观测值转移概率矩阵:

其中bij是在时刻t处于状态si的条件下生成观测值oj的概率。
b 晴干 = 某天是晴天条件下,某天是地是干的的概率。 (同一时刻)

π是初始状态概率向量:

其中πi是在时刻t=1处于状态si的概率。
π 晴 = 初始第一天是晴天的概率;
π 雨 = 初始第一天是雨天的概率;

p(i t | .....) 表示在从 t-1时刻的观测值q t-1 ,一直到第1时刻观测值q1 的条件下,在第t时刻发生状态的概率。

性质1: 最终分析结果发现,在第t时刻发生状态的概率it只和t-1时刻有关。
性质2: 第t时刻的观测值qt只和第t时刻的状态it有关。

假设有三个盒子,编号为1,2,3;每个盒子都装有黑白两种颜色的小球,球的比例。如下:

按照下列规则的方式进行有放回的抽取小球,得到球颜色的观测序列:
1、按照π的概率选择一个盒子,从盒子中随机抽取出一个球,记录颜色后放回盒子中;
2、按照某种条件概率选择新的盒子,重复该操作;
3、最终得到观测序列:“白黑白白黑”

例如: 每次抽盒子按一定的概率来抽,也可以理解成随机抽。
第1次抽了1号盒子①,第2次抽了3号盒子③,第3次抽了2号盒子②.... ; 最终如下:
①→③→②→②→③ 状态值
白→黑→白→白→黑 观测值

1、 状态集合: S={盒子1,盒子2,盒子3}
2、 观测集合: O={白,黑}
3、 状态序列和观测序列的长度 T=5 (我抽了5次)
4、 初始概率分布: π 表示初次抽时,抽到1盒子的概率是0.2,抽到2盒子的概率是0.5,抽到3盒子的概率是0.3。
5、 状态转移概率矩阵 A:a11=0.5 表示当前我抽到1盒子,下次还抽到1盒子的概率是0.5;
6、 观测概率矩阵 B:如最初的图,b11=第一个盒子抽到白球概率0.4,b12=第一个盒子抽到黑球概率0.6;

在给定参数π、A、B的时候,得到观测序列为“白黑白白黑”的概率是多少?

这个时候,我们不知道隐含条件,即不知道状态值:①→③→②→②→③ ;
我们如何根据π、A、B求出测序列为“白黑白白黑”的概率?

02 隐马尔可夫模型 - HMM的三个问题 - 概率计算、学习、预测

㈡ 西方期权定价理论的二项分布期权定价模型

针对布-肖模型股价波动假设过严,未考虑股息派发的影响等问题,考克斯、罗斯以及罗宾斯坦等人提出了二项分布期权定价模型(binomial option pricing model-bopm),又称考克斯-罗斯-罗宾斯坦模型〔(1)e〕。
该模型假设:
第一,股价生成的过程是几何随机游走过程(geometric random walk),股票价格服从二项分布。与布-肖模型一样,在bopm模型中,股价的波动彼此独立且具有同样的分布,但这种分布是二项分布,而非对数正态分布。也就是说,把期权的有效期分成n个相等的区间,在每一个区间结束时,股价将上浮或下跌一定的量,从而:
(附图 {图})
令snj代表第n个区间后的股价,其间假定股价上浮了j次,下跌了(n-j)次,则:
(附图 {图})
第二,风险中立(risk-neutral economy)。由于连续交易机会的存在,期权的价格与投资者的风险偏好无关,它之所以等于某一个值,是因为偏离这一数值产生了套利机会,市场力量将使之回到原先的水平。 假设股票现价为s[0],一个区间后买方期权到期,那时股价或者上升为s[11]或者下降为s[10]即,:
(附图 {图})
根据风险中立的假设,任何一种资产都应当具有相同的期望收益率,否则就会发生套利行为。也就是说此时无风险债券、股票及买方期权的将来价值满足如下关系:
(附图 {图})
上式中,q表示的是股票价格上涨的概率,因而期权的价格乃相当于其预期价格的贴现值。 上述分析可以进一步推广到n个区间的买方期权价格的确定。首先,需计算出买方期权价格的预期值,假设在n个区间里,在股价上涨k次前,买方期权仍然是减值期权,内在价值仍为0,而k次到n次之间,它具有内在价值,则:
(附图 {图})
(附图 {图}) 先前的分析没有考虑股息的存在,假定某种股票每股在t时将派发一定量的股息,股息因子为f,除息日与付息日相同,则在除息日股价将会下降相当于股息的金额fs[t]。
(附图 {图})
对于美式期权,则需考虑提前执行的情况:
在t时若提前执行,其价格等于内在的价值;不执行,则可按前面的推导得到相应的价格。最终t时的价格应当是提前执行与不提前执行情况下的最大者。即:
(附图 {图}) 根据欧洲期权的平价关系,可直接从其买方期权导出卖方期权价格,而美国期权则不能。利用上述推导美国买方期权价格的方法,可以同样得到:
(附图 {图})
这就是美国卖方期权的定价公式。从上述bopm模型的推演中可看出其主要特点:
1.影响期权价格的变量主要有基础商品的市价(s),期权协定价格(x),无风险利率(r),股价上升与下降的因子(u,d),以及股息因子(f)及除息次数。事实上u与d描述的是股价的离散度,因而与布-肖模型相比,bopm所考虑的主要因素与前者基本相同,但因为增加了有关股息的讨论,因而在派发股息的期权及美国期权的定价方面,具有优势。
2.根据二项分布的特点,bopm模型中只要对u与d及p作出适当的界定,它就可以回答跳动情况下的期权的定价问题。这是布-肖模型所不能够的。同时,当n达到一定规模后,二项分布趋向于正态分布,只要u、d及p的选择正确,bopm模型会逼近布-肖模型。
与布-肖模型一样,二项分布定价模型也被推广到外汇、利率、期货等的期权定价上,受到理论界与实业界的高度重视。
三、对西方期权定价理论的评价
以布莱克-肖莱斯模型和bopm模型为代表的西方期权定价理论,是伴随着期权交易,特别是场内期权交易的扩大与发展而逐渐丰富与成熟起来的。这些理论基本上是以期权交易的实践为背景,并直接服务于这种实践,具有一定的科学价值与借鉴意义。
首先,模型将影响期权价格的因素归纳为基础商品价格、协定价格、期权有效期、基础商品价格离散度以及无风险利率和股息等,并认为期权价格是这些因素的函数,即:
c或p=(s,x,t,σ,γ,d)
在此基础上得到了计算期权价格的公式,具有较高的可操作性。比如在布-肖模型中,s、x及t都可以直接得到,γ亦可以通过相同期限的国库券收益率而求出,因而运用该模型进行估价,只需求出相应的σ值即基础商品的价格离散度即可。实践中,σ值既可通过对历史价格的分析得到,亦可假定未行使的期权的市场价格即为均衡价格,将相应变量代入求得(此时称为隐含的离散度implicit volatility)。因而操作起来比较方便。同时,这种概括是基于期权的内在特点,把它放在统一的资本市场考虑的结果。其分析触及到了期权价格的实质,力图揭示期权价格“应当是”多少,而不是“可能是”多少的问题,因而比早期的计量定价模型向前迈了一大步。
其次,模型具有较强的实践性,对期权交易有一定的指导作用。布-肖模型以及二项分布模型都被编制成了计算机软件,成为投资者分析期权市场的一种有效工具。金融界也根据模型编制成现成的期权价格计算表,使用方便,一目了然,方便了投资者。正如罗伯特·海尔等所编著的《债券期权交易与投资》一书所言:“(布-肖)模型已被证明在基本假设满足的前提下是十分准确的,已成为期权交易中的一种标准工具。”具体来讲,这些模型在实践中的运用主要体现于两方面:1.指导交易。投资者可以借助模型发现市场定价过高或过低的期权,买进定价过低期权,卖出定价过高期权,从中获利。同时,还可依据其评估,制定相应的期权交易策略。此外,从模型中还可以得到一些有益的参数,比如得耳他值(△),反映的是基础商品价格变动一单位所引起的期权价格的变化,这是调整期权头寸进行保值的一个十分有用的指标。此外还有γ值(衡量△值变动的敏感性指标);q值(基础商品价格不变前提下,期权价格对于时间变动的敏感度或弹性大小),值(利率每变动一个百分点所引起的期权价格的变化)等。这些参数对于资产组合的管理与期权策略的调整,具有重要参考价值。2.研究市场行为。可以利用定价模型对市场效率的高低进行考察,这对于深化期权市场的研究也具有一定意义。

阅读全文

与隐马尔可夫模型股票市场价格相关的资料

热点内容
中兴通讯有限公司股票 浏览:122
金融街a股票行情 浏览:562
如何基本面分析股票的视频 浏览:269
平安信托有限责任公司股票代码 浏览:60
为什么大宗交易后股票会跌 浏览:784
期货和股票几点下班 浏览:389
爱博股票行情 浏览:288
股票行情栏乱显示其它代码 浏览:784
农产品市场百货公司股票 浏览:913
炒股开仓平仓持仓都什么意思 浏览:872
股票行情实时查002602 浏览:140
植发手术效果 浏览:162
东方财富炒股怎么回事 浏览:518
股票交易要收多少费用 浏览:984
股票配资软件哪家做的比较好 浏览:790
王府井股票的基金 浏览:170
国泰君安开通股票账户 浏览:614
炒股和炒黄金哪个安全吗 浏览:118
索尔仁尼琴作品 浏览:754
512010基金股票组合 浏览:297