A. 关于股票的数学模型论文
有微观联系的股票择好期权定价
摘要:目前对于择好期权的定价研究,大多没有考虑原生资产收益率之间的微观联系,使得
定价结果可能偏离真实价值.基于此考虑,给出了两家具有微观联系的上市公司股票的数学模
型,在此模型基础上利用delta对冲推导出择好期权满足的PDE,通过计价单位转换的方法求
出择好期权的定价公式,分析了股票间微观联系对择好期权的价格影响.
关键词:定价模型;微观联系;择好期权
0引言
择好期权是多资产期权的一种,其价格取决于多种原生资产价格的变化.股票择好期权的持有人在
到期日有权取得股价表现最好的那只股票.例如,某投资人拟投资股票A和股票B,但他无法肯定未来
哪一只股票的回报更高.为此他购买一张择好期权,确保在期权到期日能取得两只股票的最佳回报,同
时可以规避因只购买一只股票所带来的风险.
目前对于择好期权的定价研究,大多只考虑原生资产收益率之间的宏观相关性,而忽视了它们可能
存在的微观的相关性,如上市公司之间互相持有股票,其股票价格必定相互影响,呈现齐涨共跌.忽略这
种微观的相关性,会使得定价结果可能偏离真实价值.文献[3]给出了n个风险资产Si(i =1,2,…,n)
都遵循几何布朗运动,且每个随机元dWi(i =1,2,…,n)互相独立情形下的择好期权的模型和定价公
式.该模型并未考虑到股票之间可能存在的微观联系对择好期权价格的影响.基于此考虑,本文作者给
出了两家具有微观联系的上市公司的股票的数学模型,同时考虑股票的宏观和微观相关性,并应用于择
好期权的定价问题.运用无套利原理推导出两资产择好期权所满足的方程,并给出择好期权的定价公
式.
1模型的建立
股票择好期权定价可看作是满足式(5)所示几何Brown运动下的一般股票择好期权定价.图1取参数
S1=10,S2=10,σ1=0.2,σ2=0.2,ε2=0,ρ=0.5,两只股票有相同的初始价格与波动率,图2取
参数S1=10,S2=10,σ1=0.2,σ2=0.3,ε2=0,ρ=0.5,第二只股票的波动率高于第一只股票.可
以看到随着影响因子ε1的变化,股票择好期权的价格不断变化,但是正如式(15),V受影响因子,股票
价格,波动率,以及到期日的共同作用,而非影响因子的单调函数[5].
参考文献:
[1]BLACK F, SCHOLESM. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81,
637-654.
[2]姜礼尚,陈亚浙,刘西桓,等.数学物理方程讲义[M]. 2版,北京:高等教育出版社, 1986.
[3]姜礼尚.期权定价的数学模型和方法[M].北京:高等教育出版社, 2004.
[4]约翰·赫尔.期权、期货和其它衍生产品[M]. 3版,北京:华夏出版社, 1999.
[5]王正林,刘明.精通MATLAB 7[M].北京:电子工业出版社, 2006.
B. 布朗运动的金融数学
将布朗运动与股票价格行为联系在一起,进而建立起维纳过程的数学模型是本世纪的一项具有重要意义的金融创新,在现代金融数学中占有重要地位。迄今,普遍的观点仍认为,股票市场是随机波动的,随机波动是股票市场最根本的特性,是股票市场的常态。
布朗运动假设是现代资本市场理论的核心假设。现代资本市场理论认为证券期货价格具有随机性特征。这里的所谓随机性,是指数据的无记忆性,即过去数据不构成对未来数据的预测基础。同时不会出现惊人相似的反复。随机现象的数学定义是:在个别试验中其结果呈现出不确定性;在大量重复试验中其结果又具有统计规律性的现象。描述股价行为模型之一的布朗运动之维纳过程是马尔科夫随机过程的一种特殊形式;而马尔科夫过程是一种特殊类型的随机过程。随机过程是建立在概率空间上的概率模型,被认为是概率论的动力学,即它的研究对象是随时间演变的随机现象。所以随机行为是一种具有统计规律性的行为。股价行为模型通常用著名的维纳过程来表达。假定股票价格遵循一般化的维纳过程是很具诱惑力的,也就是说,它具有不变的期望漂移率和方差率。维纳过程说明只有变量的当前值与未来的预测有关,变量过去的历史和变量从过去到现在的演变方式则与未来的预测不相关。股价的马尔科夫性质与弱型市场有效性(the weak form of market efficiency)相一致,也就是说,一种股票的现价已经包含了所有信息,当然包括了所有过去的价格记录。但是当人们开始采用分形理论研究金融市场时,发现它的运行并不遵循布朗运动,而是服从更为一般的几何布朗运动(geometric browmrian motion)。
C. 几何布朗运动的介绍
几何布朗运动(GBM) (也叫做指数布朗运动) 是连续时间情况下的随机过程,其中随机变量的对数遵循布朗运动. 1几何布朗运动在金融数学中有所应用,用来在布莱克-舒尔斯定价模型中模仿股票价格。
D. 求经济B-S期权定价模型的原理还有计算方法
假定股票价格服从几何布朗运动,即dSt/St=μdt+σdWt. St为t时点股票价格,μ为漂移量,σ为波动率,Wt为标准布朗运动。使用伊藤公式。然后用无套利原理求得BSPDE。
E. ssc在数学中公式
本系列的前篇从布朗运动出发,介绍了布朗运动的性质并解释了为什么使用几何布朗运动来描述股价是被投资界广泛接受的。此外,前文给出了伊藤引理的最基本形式,它是随机分析的基础,为分析衍生品定价提供了坚实的武器。
作为本系列的后篇,本文将从扩展伊藤引理出发,并用它求解几何布朗运动,然后推导 BS 微分方程以及 BS 公式(也称 Black-Scholes-Merton 公式)。在介绍 BS 公式时,论述的重点会放在衍生品定价中的一个核心方法,即风险中性定价理论。此外,我们会花一定的笔墨来解释 BS 公式中的两个核心要素(即 N(d_1) 和 N(d_2) 的业务含义),明白它们对理解 BS 公式至关重要。
阅读提示:下文中将涉及大量数学公式,对阅读体验造成影响,我们表示歉意。我们当然不是在写学术论文,但是必要的数学推导对于理解期权定价模型至关重要。如果你对阅读大数学实在不感兴趣,可以跳过第二、三两节,从第四节开始看。
在那之前,先来点轻松的,看看 Black,Scholes 和 Merton 三位大咖长什么样子。Scholes 和 Merton 因在衍生品定价方面的杰出工作于 1997 年获得诺贝尔经济学奖。Black 没有在列的原因是他不幸地于 1995 年去世,而诺贝尔奖不追授给颁奖时已故 6 个月以上的学者。
2 伊藤引理的一般形式
在前篇中,我们介绍了带有漂移(drift)和扩散(diffusion)的布朗运动有如下形式的随机微分方程。在这里,μ 和 σ 被假定为常数。
更一般的,漂移和扩散的参数均可以是随机过程 X(t) 以及时间 t 的函数。假设我们令 a(X(t),t) 和 b(X(t),t) 表示漂移和扩散参数(则在上面这个例子中,a(X(t),t) = μ 而 b(X(t),t) = σ)。我们称满足如下随机微分方程(stochastic differential equation,或 SDE)的随机过程为伊藤漂移扩散过程(Itō drift-diffusion process,下称伊藤过程):
令 f(X(t), t) 为 X(t) 的二阶连续可导函数(并对 t 一阶可导),由伊藤引理可知(省略自变量以简化表达):
将 dX = a(X(t),t)dt + b(X(t),t)dB 带入上式,并且略去所有比 dt 更高阶的小量,最终可以得到伊藤引理的一般形式:
由 f 的 SDE 可知,作为 X 和 t 的函数运链,f 本身也是一个伊藤过程。更重要的是,伊藤引理说明,df 表达式右侧的布朗运动 dB 恰恰正是 dX 表达式中的那个布朗运动。换句话说,在 f 和 X 的随机性由同一个布朗运动决定,而非两个独立的布朗运动。这一点在下文中推导 BS 微分方程时至关重要。
下面我们就利用伊藤引理求解几何布朗运动。
3 几何布朗运动求解
对于股票价格 S,可以用满足如下 SDE 的几何布朗运动来描述。
上式中 μ 是股票的期望年收益率,σ 是股票年收益率的标准差。显然,这是一个旁洞孙伊藤过程(a = μS,b = σS)。为了求解 S,令 f = lnS(S 的自然对数)并对 df 使用伊藤引理(注:为了保持符号和前篇的一致性,我们用 S 而非 X 代表股票价格的随机过程)得到 lnS 的 SDE:
这个式子说明,lnS 是一个带漂移的布朗运动,它的漂移率为 μ – 0.5σ^2,波动率为 σ。由布朗运动颤携的性质可知,在任何时间 T,lnS 的变化符合正态分布:
如果一个随机变量的对数满足正态分布,我们说这个随机变量本身满足对数正态分布(lognormal distribution)。因此,当我们用几何布朗运动来描述股价波动时,得到的股价满足对数正态分布。
通过对 lnS 的 SDE 两边积分,再对等式两边取指数,便可很容易的写出股价随时间变化的解析式:
上式乍一看好像有悖于我们的直觉。我们已知股票的年收益率期望为 μ。但在上式中,抛开 B(T) 带来的随机性不谈而仅看时间 T 的系数,股价的增长速率是 μ – 0.5σ^2 而不是 μ。这意味着什么呢?数值 μ – 0.5σ^2 又是否是什么别的收益率呢?
正确答案是,μ – 0.5σ^2 恰恰是股票每年的连续复利期望收益率。利用股价 S 的对数正态特性可以说明这一点。假设 x 代表股票每年的连续复利收益率。因此有 S(T) = S(0)e^(xT),或 x = (1/T)×(lnS(T) - lnS(0))。由上面的分析可知,lnS(T) – lnS(0) 符合均值为 (μ – 0.5σ^2)T、方差为 (σ^2)T 的正态分布。因此每年的连续复利收益率 x 也是正态分布并且满足:
直观比较股票的每年期望收益率 μ 和每年连续复利期望收益率 μ – 0.5σ^2,后者考虑了波动 σ,它们的区别就是年收益率序列算数平均值和几何平均值的区别。
来看一个例子。假设某股票在过去五年的年收益率分别为 15%,20%,30%,-20% 和 25%。这个序列的算数平均值为 14%,因此该股票的每年的(样本)期望收益率 μ = 14%。再来看看它每年连续复利期望收益率是多少。假设我们在五年前花 100 块买入它并持有 5 年,那么在 5 年后我们的回报是 100×1.15×1.20×1.30×0.80×1.25 = 179.4。因此每年(样本)连续复利期望收益率(即这个收益率序列的几何平均值)为 12.4%,显然它低于算数平均值
F. 证券价格服从漂移参数0.05,波动参数0.3的几何布朗运动,当前价格为95,利率是4% 假设有种
后答案上默认为这个概率等于P[ln(S(0.5)/
G. 布朗运动是什么
布朗运动的特点是布朗粒子的位移分布和粒子数密度分布都满足扩散现象的规律。这说明在粒子浓度不均匀时发生的扩散现象,其本质是粒子的布朗运动产生了位移。在实际的技术应用中,扩散技术相当引人重视。 在半导体集成电路制造过程中,常用扩散方法将特定杂质引入半导体的预定部位,以形成器件或组件,使其具有设计的电路功能。扩散过程是在较高温度下进行的,杂质原子通过晶体中的缺陷(空位或填隙原子)而迁移。所以,作布朗运动的粒子不只有尺度在微米级的颗粒,也可能是原子或分子。布朗粒子的运动特点是具有随机性和偶然性。 在离子晶体中有正、负两种离子,同时存在正、负离子空位,正、负离子就是通过这些空位来扩散的。由于这种运动是随机的和无规则的,各个方向迁移的概率相同,因此,带电粒子的布朗运动不会产生电流。但是如果加上恒定电场,离子运动就会在随机的无规则的迁移之上加一项定向运动,从而能传导电流。 由于作热运动的大量介质分子(原子)对宏观小物体的无规碰撞导致随机运动引起的涨落,这种涨落以布朗运动为代表,所以布朗运动的实质是涨落。 电路中也有涨落现象,譬如电流、电压的涨落,经过线路放大,产生噪声。在导体中电子的热运动是无规则的,有外电场时,在平均电流的背景上,还有一部分涨落电流,它使电信号产生噪声。 在爱因斯坦关于布朗运动的论文发表之前,1900年法国数学家巴施里叶发表了论述股票的论文《投机理论》,认为根据当前的股价并不能确切知道下一时刻的股价,而只知道下一时刻股价的概率分布。他对股票价格的不规则波动构造了一个数学模型,这个模型与1905年爱因斯坦为布朗运动所建立的模型一致。后来,“股票价格比例变化是一种布朗运动”成为金融研究中的一个普遍假设。
H. 有关布朗运动和期权定价的问题,望大神解答!
布朗运动是将看起来连成一片的液体,在高倍显微镜下看其实是由许许多多分子组成的。液体分子不停地做无规则的运动,不断地随机撞击悬浮微粒。当悬浮的微粒足够小的时候,由于受到的来自各个方向的液体分子的撞击作用是不平衡的。在某一瞬间,微粒在另一个方向受到的撞击作用超强的时候,致使微粒又向其它方向运动,这样,就引起了微粒的无规则的运动就是布朗运动。
期权定价模型(OPM)----由布莱克与斯科尔斯在20世纪70年代提出。该模型认为,只有股价的当前值与未来的预测有关;变量过去的历史与演变方式与未来的预测不相关 。模型表明,期权价格的决定非常复杂,合约期限、股票现价、无风险资产的利率水平以及交割价格等都会影响期权价格。