导航:首页 > 价格看点 > 股票价格数据python

股票价格数据python

发布时间:2023-11-07 07:51:09

㈠ 问一个Python分析股票价格的问题......

你先把价格按日期排序之后变成一个list的话,比如:
price=[70,74, 73, 72, 71,75]
你可以这么办:
operations=[]
isLong=False
for i in range(len(price)-1):
if(not isLong):
if(price[i]<price[i+1]):
print "Go long on day " + str(i)
operations.append(-1);
isLong=True;
else:
operations.append(0);
else:
if(price[i]>price[i+1]):
print "Go short on day " + str(i)
operations.append(1);
isLong=False;
else:
operations.append(0);
if(isLong):
print "Go short on day " + str(len(price)-1)
operations.append(1)
else:
operations.append(0)
ProfitPerShare=0
for i in range(len(price)):
ProfitPerShare+=price[i]*operations[i]
print "Summary profit per share: "+str(ProfitPerShare)

这里面就是说,如果你是空仓,那么如果明天比今天高就买,否则明天买就比今天买更划算;如果你不空仓,那么如果明天比今天价低你就要清仓,否则明天卖就会更划算。然后用一个叫operations的list来记录你每天的操作,-1表示买,0表示没有,1表示卖,所以最后可以计算每股获得的收入price[i]*operations[i]的总和。

㈡ 怎么用python计算股票

作为一个python新手,在学习中遇到很多问题,要善于运用各种方法。今天,在学习中,碰到了如何通过收盘价计算股票的涨跌幅。
第一种:
读取数据并建立函数:
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import spline
from pylab import *
import pandas as pd
from pandas import Series
a=pd.read_csv('d:///1.csv',sep=',')#文件位置

t=a['close']
def f(t):
s=[]
for i in range(1,len(t)):
if i==1:
continue
else:
s.append((t[i]-t[i-1])/t[i]*100)
print s
plot(s)

plt.show()
f(t)
第二种:
利用pandas里面的方法:
import pandas as pd

a=pd.read_csv('d:///1.csv')
rets = a['close'].pct_change() * 100
print rets

第三种:
close=a['close']
rets=close/close.shift(1)-1
print rets

总结:python是一种非常好的编程语言,一般而言,我们可以运用构建相关函数来实现自己的思想,但是,众所周知,python中里面的有很多科学计算包,里面有很多方法可以快速解决计算的需要,如上面提到的pandas中的pct_change()。因此在平时的使用中应当学会寻找更好的方法,提高运算速度。

㈢ Python量化教程:不得不学的K线图「代码复制可用」

不管是对量化分析师还是普通的投资者来说,K线图(蜡烛图)都是一种很经典、很重要的工具。在K线图中,它会绘制每天的最高价、最低价、开盘价和收盘价,这对于我们理解股票的趋势以及每天的多空对比很有帮助。

一般来说,我们会从各大券商平台获取K线图,但是这种情况下获得的K线图往往不能灵活调整,也不能适应复杂多变的生产需求。因此我们有必要学习一下如何使用Python绘制K线图。

需要说明的是,这里mpl_finance是原来的matplotlib.finance,但是现在独立出来了(而且好像没什么人维护更新了),我们将会使用它提供的方法来绘制K线图;tushare是用来在线获取股票数据的库;matplotlib.ticker中有个FuncFormatter()方法可以帮助我们调整坐标轴;matplotlib.pylab.date2num可以帮助我们将日期数据进行必要的转化。

我们以上证综指18年9月份以来的行情为例。

我们先使用mpl_finance绘制一下,看看是否一切正常。

可以看到,所有的节假日包括周末,在这里都会显示为空白,这对于我们图形的连续性非常不友好,因此我们要解决掉他们。

可以看到,空白问题完美解决,这里我们解释一下。由于matplotlib会将日期数据理解为 连续数据 ,而连续数据之间的间距是有意义的,所以非交易日即使没有数据,在坐标轴上还是会体现出来。连续多少个非交易日,在坐标轴上就对应了多少个小格子,但这些小格子上方并没有相应的蜡烛图。

明白了它的原理,我们就可以对症下药了。我们可以给横坐标(日期)传入连续的、固定间距的数据,先保证K线图的绘制是连续的;然后生成一个保存有正确日期数据的列表,接下来,我们根据坐标轴上的数据去取对应的正确的日期,并替换为坐标轴上的标签即可。

上边format_date函数就是这个作用。由于前边我们给dates列生成了从0开始的序列连续数据,因此我们可以直接把它当作索引,从真正的日期列表里去取对应的数据。在这里我们要使用matplotlib.ticker.FuncFormattter()方法,它允许我们指定一个格式化坐标轴标签的函数,在这个函数里,我们需要接受坐标轴的值以及位置,并返回自定义的标签。

你学会了吗?

当然,一个完整的K线图到这里并没有结束,后边我们会考虑加入均线、成交量等元素,感兴趣的同学欢迎关注哦!

㈣ 用Python中的蒙特卡洛模拟两支股票组成的投资组合的价格趋势分析

蒙特卡洛模拟是一种模拟把真实系统中的概率过程用计算机程序来模拟的方法。对于投资组合的价格趋势分析,可以使用Python中的蒙特卡洛模拟。首先,回顾投资组合的价格趋势。投资组合中的股票价格的趋势是受多种因素影响的,可分为经济、政治和技术因素,其中经济因素最重要。因此,蒙特卡洛模拟可以模拟这些因素对投资组合价格趋势的影响,并通过计算机绘制投资组合价格趋势的曲线。
Python中的蒙特卡洛模拟首先需要计算投资组合中各股票价格的每一期的收益率,其次,计算出投资组合的收益率;随后,计算预测投资组合的期权价格,并将所有的期权价格叠加起来,从而绘制投资组合的价格曲线。最后,在投资组合的价格曲线的基础上,可以分析投资组合在不同时期的价格走势,并进行投资组合结构的调整,从而获得最优投资组合。

㈤ python 设计一个名为Stock的类来表示一个公司的股票

是的,设计一个名为 Stock的类表示股票,该类包括:
1、一个名为symbol的字符串数据域表示股票代码:
2、一个名为name的字符串数据域表示股票名称;
3、一个名为previousPrice的double型数据域,用来存储股票的前一 日收盘价:
4、一个名为currentPrice的double型数据域,用来存储股票的当前价格:
5、创建一个给定特定代码和名称的股票构造方法:
6、一个名为getChangePercentO方法,返回从前的日价格到当前价格变化的百分比。
实现这个类,编写个测试程序,创建一个Stock 对象,它的股票代码是600000,股票名称是“浦发银行”,前一日收盘价是 25.5元,当前的最新价是28.6元,显示市值变化的百分比。

拓展资料
设计一个Stock类和DividendStock类
编写了一个表示拥有股票情况的Stock类,这里给出了一个简化版,去掉了对参数的合法性的检查等细节,现在需要创建一个可以发放分红的股票。红利的多少和持有股票的数量成正比,不是所有的股票都是会有分红的,所以不能直接在Stock类上直接增加这个功能,而是应该在Stock类的基础上,继承一个DividendStock类。并在这个子类中增加分红的属性和行为。
(1)一个用于记录分红的字段dividents
(2)重写父类的getProfit方法(在父类的getProfit方法的基础上还要加上分红的)
父类的getProfit+股票的总的分红(也就是字段dividents的值)
(3)增加计算分红的方法,方法中的参数表示每股的红利,可以理解为成员变量dividents赋值: 股票的总的分红=每股的红利*总股数
public void payDividend(double amountPerShare)
编写一个测试的程序,创建一个名为”Oracle”的分红股票,先后以单价32元购买200股,以单价40元购买350股。每股的分红2.8元。这支股票的当前价格是每股50元。

㈥ 说明 Python 处理业财数据的应用场景,并写出相应代码。可以从采购业务、存货

Python 是一种流行的编程语言,通常用卜丛于处理财务数据。一个常见的纯盯应用是在数据分析和数据科学领域,Python强大的数据处理和可视化库可用于分析大型数据集并识别数据中的趋势和模式。

可用于分析财务数据的 Python 脚本的一个示例是计算指定时间段内特定股票平均价格的脚本。金融分析师可以使用此脚本来做弊和跟踪股票的表现并预测其未来的价格走势。

下面是计算股票平均价格的 Python 代码示例:

在此代码中,我们首先导入 and 库,这些库通常用于处理 Python 中的财务数据。然后,我们使用库中的函数将库存数据从 CSV 文件加载到 ,这是一种用于处理表格数据的强大数据结构。pandasnumpyread_csv()pandasDataFrame

接下来,我们使用对象中的函数来计算股票的平均价格。最后,我们将结果打印到控制台。mean()DataFrame

这只是Python如何用于财务数据分析的一个简单示例。在这个领域使用Python还有许多其他应用和可能性,包括分析投资组合的表现,预测股票价格等等。

回答不易望请采纳

㈦ 如何用python代码判断一段范围内股票最高点

Copyright © 1999-2020, CSDN.NET, All Rights Reserved




登录

python+聚宽 统计A股市场个股在某时间段的最高价、最低价及其时间 原创
2019-10-12 09:20:50

开拖拉机的大宝

码龄4年

关注
使用工具pycharm + 聚宽数据源,统计A股市场个股在某时间段的最高价、最低价及其时间,并打印excel表格输出

from jqdatasdk import *
import pandas as pd
import logging
import sys
logger = logging.getLogger("logger")
logger.setLevel(logging.INFO)

# 聚宽数据账户名和密码设置
auth('username','password')

#获取A股列表,包括代号,名称,上市退市时间等。
security = get_all_securities(types=[], date=None)
pd2 = get_all_securities(['stock'])


# 获取股票代号
stocks = list(get_all_securities(['stock']).index)

# 获取股票名称
stocknames = pd2['display_name']

start_date = 񟭏-01-01'
end_date = 񟭒-12-31'
def get_stocks_high_low(start_date,end_date):
# 新建表,表头列
# 为:"idx","stockcode","stockname","maxvalue","maxtime","lowvalue","lowtime"
result = pd.DataFrame(columns=["idx", "stockcode", "stockname", "maxvalue", "maxtime", "lowvalue", "lowtime"])
for i in range(0,stocks.__len__()-1):
pd01 = get_price(stocks[i], start_date, end_date, frequency='daily',
fields=None, skip_paused=False,fq='pre', count=None)
result=result.append(pd.DataFrame({'idx':[i],'stockcode':[stocks[i]],'stockname':
[stocknames[i]],'maxvalue':[pd01['high'].max()],'maxtime':
[pd01['high'].idxmax()],'lowvalue': [pd01['low'].min()], 'lowtime':
[pd01['low'].idxmin()]}),ignore_index=True)

result.to_csv("stock_max_min.csv",encoding = 'utf-8', index = True)
logger.warning("执行完毕!

㈧ 如何选取过去每个月股票的市值 python

类似,可以修改一下
股票涨跌幅数据是量化投资学习的基本数据资料之一,下面以python代码编程为工具,获得所需要的历史数据。主要步骤有:
(1) #按照市值从小到大的顺序活得N支股票的代码;
(2) #分别对这一百只股票进行100支股票操作;
(3) #获取从2016.05.01到2016.11.17的涨跌幅数据;
(4) #选取记录大于40个的数据,去除次新股;
(5) #将文件名名为“股票代码.csv”。
具体代码如下:
# -*- coding: utf-8 -*-
"""
Created on Thu Nov 17 23:04:33 2016
获取股票的历史涨跌幅,并分别存为csv格式
@author: yehxqq151376026
"""

import numpy as np
import pandas as pd

#按照市值从小到大的顺序活得100支股票的代码
df = get_fundamentals(
query(fundamentals.eod_derivative_indicator.market_cap)
.order_by(fundamentals.eod_derivative_indicator.market_cap.asc())
.limit(100),'2016-11-17', '1y'
)

#分别对这一百只股票进行100支股票操作
#获取从2016.05.01到2016.11.17的涨跌幅数据
#选取记录大于40个的数据,去除次新股
#将文件名名为“股票代码.csv”
for stock in range(100):
priceChangeRate = get_price_change_rate(df['market_cap'].columns[stock], '20160501', '20161117')
if priceChangeRate is None:
openDays = 0
else:
openDays = len(priceChangeRate)
if openDays > 40:
tempPrice = priceChangeRate[39:(openDays - 1)]
for rate in range(len(tempPrice)):
tempPrice[rate] = "%.3f" %tempPrice[rate]
fileName = ''
fileName = fileName.join(df['market_cap'].columns[i].split('.')) + '.csv'
fileName
tempPrice.to_csv(fileName)

阅读全文

与股票价格数据python相关的资料

热点内容
手机买股票的软件好用 浏览:200
3jp 浏览:320
买股票不要融资 浏览:632
股票期权如何交易分拆单 浏览:846
股票手机上的指标 浏览:483
股票每日最新净值查询 浏览:621
股票开户一般要等多久 浏览:532
顺势而为炒股法 浏览:642
新款马自达2 浏览:346
股票手机号贴吧 浏览:28
国外证券公司股票 浏览:301
疫情对炒股有影响吗 浏览:723
富国新能源 浏览:33
东方财富网银行卡股票账户关联 浏览:955
如何注册股票咨询公司 浏览:925
女孩说她和朋友买股票赚钱了 浏览:211
华显科技有限公司股票 浏览:613
投指数基金要懂股票知识吗 浏览:163
一支股票全天没有交易 浏览:712
2020年11月股票市场运行情况分析 浏览:461