❶ 如何计算股票,期望收益率,方差,均方差
数学题吗方差?
❷ 股票的组合收益率,组合方差怎么求
分散投资降低了风险(风险至少不会增加)。
1、组合预期收益率=0.5*0.1+0.5*0.3=0.2。
2、两只股票收益的协方差=-0.8*0.3*0.2=-0.048。
3、组合收益的方差=(0.5*0.2)^2+(0.5*0.3)^2+2*(-0.8)*0.5*0.5*0.3*0.2=0.0085。
4、组合收益的标准差=0.092。
组合前后发生的变化:组合收益介于二者之间;风险明显下降。
(2)股票方差怎么分析扩展阅读:
基本特征:
最早的对中国收益率的研究应该是Jamison&Gaag在1987年发表的文章。初期的研究样本数量及所覆盖的区域都很有限,往往仅是某个城市或县的样本。而且在这些模型中,往往假设样本是同质的,模型比较简单。
在后来的研究中,样本量覆盖范围不断扩大直至全国性的样本,模型中也加入了更多的控制变量,并且考虑了样本的异质性,如按样本的不同属性分别计算了其收益率,并进行比较。
这些属性除去性别外,还包括了不同时间、地区、城镇样本工作单位属性、就业属性、时间、年龄等。下面概况了研究的主要结果。
❸ 怎么套用公式分析一只股票,举例说明做基本面分析和技术分析
楼主你不要相信什么技术分析和基本分析可以出奇的帮你致胜,技术分析我只会一个移动平均线(50日均线的上下百分之十就是指数的一大区间:胡立阳),这个在十一月份的高点也是正确的,可惜我卖了百灵留了中信,挺傻的当时搞反了。在股市中未来的收益都是不确定的,具体的投资组合,许多大师及高手他们有的一年才只做一只股票,所以这并不是说只拿着算就行的。
投资其实很简单,如果不简单请参照前一句。你说的方差什么的我现在都不学了,如果是兴趣,学点实用的,如果是从事这一行业的小心误导人民。股市中唯一不骗人的就只有成交量了。
胡立阳的价格投资,这个你要好好的看一下,特别是在中国的股市里面,里面的好多法则真的很好用的。技术分析在下跌中往往能给你一个错误的信号。
牛市前期追价值型的,牛市中后期追垃圾问题股。
目前行情简单的说一下个人的看法:年前如果跌破2800点,只要不是因为半岛局势那么大可以进仓,目标就是大盘蓝筹股,新兴产业绩优股,二八现象不可过于担心,大跌不要惊慌。
❹ 如何知道一支股票的方差和贝塔系数
1、自己计算。
2、查别人的计算结果,比如wind
❺ 股票,期望收益率,方差,均方差的计算公式
股票的计算公式:购买价=买入价×数量(股数)+佣金+过户费成本价=购买价÷数量
一、期望收益率的计算方式:
第一种方法的期望收益值为:100
*
1/2
+
0
*
1/2
=50
(但实际去做可能是50
也可能是100,也可能是0,不一定等于50);
第二种方法,则收益值肯定为50。
二、方差计算方法:
设一组数据x1,x2,x3……xn中,各组数据与它们的平均数x(拔)的差的平方分别是(x1-x拔)2,(x2-x拔)2……(xn-x拔)2,那么我们用他们的平均数来衡量这组数据的波动大小,并把它叫做这组数据的方差。
三、均差的计算方法:
设一组数据x1,x2,x3……xn中,各组数据与它们的平均数x(拔)的差的平方分别是(x1-x拔)2,(x2-x拔)2……(xn-x拔)2,那么我们用他们的平均数来衡量这组数据的波动大小,并把它叫做这组数据的方差。
❻ 求A、B两股票标准差和协方差,要有计算步骤
1、求A、B两股票标准差和协方差,要有计算步骤如下图:
2、标准差(Standard Deviation) ,中文环境中又常称均方差,但不同于均方误差(mean squared error,均方误差是各数据偏离真实值的距离平方的平均数,也即误差平方和的平均数,计算公式形式上接近方差,它的开方叫均方根误差,均方根误差才和标准差形式上接近),标准差是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。
3、协方差分析是建立在方差分析和回归分析基础之上的一种统计分析方法。 方差分析是从质量因子的角度探讨因素不同水平对实验指标影响的差异。一般说来,质量因子是可以人为控制的。 回归分析是从数量因子的角度出发,通过建立回归方程来研究实验指标与一个(或几个)因子之间的数量关系。但大多数情况下,数量因子是不可以人为加以控制的。
❼ 均值方差和平均回报率怎么判断股票
均值-方差模型是马可维兹为投资组合理论的巨大贡献,其基本内容可以用资本市场线来表示,由均值-方差组成的有效集边界与投资者的无差异曲线的相切的点,便是投资者对风险和收益达到均衡的点,藉此来选择风险和收益合适的股票。
平均回报率模型是马可维兹的学生威廉-夏普在其理论的基础上进一步研究得出的模型,即资本资产定价模型CAPM,主要内容未股票或公司的收益率由无风险收益和市场风险溢价组成,市场不会为投资者承担个股风险而支付报酬,及市场投资者只能获得市场风险的报酬率,直观表示为证券市场线。
以上两模型是投资组合理论的核心模型,但是由于假设过于严格,在实际中应用容易出现偏差,因此后面ross等人有开发出了套利定价模型等更加贴切实际的理论,但都无法动摇上述理论的核心作用。
❽ 某一个股票与股票市场组合的方差是什么意思
任何投资者都希望投资获得最大的回报,但是较大的回报伴随着较大的风险。为了分散风险或减少风险,投资者投资资产组合。资产组合是使用不同的证券和其他资产构成的资产集合,目的是在适当的风险水平下通过多样化获得最大的预期回报,或者获得一定的预期回报使用风险最小。 作为风险测度的方差是回报相对于它的预期回报的离散程度。资产组合的方差不仅和其组成证券的方差有关,同时还有组成证券之间的相关程度有关。为了说明这一点,必须假定投资收益服从联合正态分布(即资产组合内的所有资产都服从独立正态分布,它们间的协方差服从正态概率定律),投资者可以通过选择最佳的均值和方差组合实现期望效用最大化。如果投资收益服从正态分布,则均值和方差与收益和风险一一对应。 如本题所示,两个资产的预期收益率和风险根据前面所述均值和方差的公式可以计算如下:1。股票基金 预期收益率=1/3*(-7%)+1/3*12%+1/3*28%=11% 方差=1/3[(-7%-11%)^2+(12%-11%)^2+(28%-11%)^2]=2.05% 标准差=14.3%(标准差为方差的开根,标准差的平方是方差)2。债券基金 预期收益率=1/3*(17%)+1/3*7%+1/3*(-3%)=7% 方差=1/3[(17%-7%)^2+(7%-7%)^2+(-3%-7%)^2]=0.67% 标准差=8.2%注意到,股票基金的预期收益率和风险均高于债券基金。然后我们来看股票基金和债券基金各占百分之五十的投资组合如何平衡风险和收益。投资组合的预期收益率和方差也可根据以上方法算出,先算出投资组合在三种经济状态下的预期收益率,如下: 萧条:50%*(-7%)+50%*17%=5% 正常:50%*(12%)+50%*7%=9.5% 繁荣:50%*(28%)+50%*(-3%)=12.5%则该投资组合的预期收益率为:1/3*5%+1/3*9.5%+1/3*12.5%=9%该投资组合的方差为:1/3[(5%-9%)^2+(9.5%-9%)^2+(12.5%-9%)^2]=0.001%该投资组合的标准差为:3.08% 注意到,其中由于分散投资带来的风险的降低。一个权重平均的组合(股票和债券各占百分之五十)的风险比单独的股票或债券的风险都要低。 投资组合的风险主要是由资产之间的相互关系的协方差决定的,这是投资组合能够降低风险的主要原因。相关系数决定了两种资产的关系。相关性越低,越有可能降低风险。
❾ 股票的组合收益率,组合方差怎么求
正确答案为:Y选项 答案解析:我们一般用股票投资收益率的方差或者股票的β值来衡量一只股票或股票组合的风险。通常股票投资组合的方差是由组合中各股票的方差和股票之间的协方差两部分组合,组合的期望收益率是各股票的期望收益率的加权平均。
❿ 股票的预期收益率和方差怎么算
具体我也不太清楚,所以帮你搜了一下,转发给你看,希望能帮到你!
例子:
上面两个资产的预期收益率和风险根据前面所述均值和方差的公式可以计算如下:
1。股票基金
预期收益率=1/3*(-7%)+1/3*12%+1/3*28%=11%
方差=1/3[(-7%-11%)^2+(12%-11%)^2+(28%-11%)^2]=2.05%
标准差=14.3%(标准差为方差的开根,标准差的平方是方差)
2。债券基金
预期收益率=1/3*(17%)+1/3*7%+1/3*(-3%)=7%
方差=1/3[(17%-7%)^2+(7%-7%)^2+(-3%-7%)^2]=0.67%
标准差=8.2%
注意到,股票基金的预期收益率和风险均高于债券基金。然后我们来看股票基金和债券基金各占百分之五十的投资组合如何平衡风险和收益。投资组合的预期收益率和方差也可根据以上方法算出,先算出投资组合在三种经济状态下的预期收益率,如下:
萧条:50%*(-7%)+50%*17%=5%
正常:50%*(12%)+50%*7%=9.5%
繁荣:50%*(28%)+50%*(-3%)=12.5%
则该投资组合的预期收益率为:1/3*5%+1/3*9.5%+1/3*12.5%=9%
该投资组合的方差为:1/3[(5%-9%)^2+(9.5%-9%)^2+(12.5%-9%)^2]=0.001%
该投资组合的标准差为:3.08%
注意到,其中由于分散投资带来的风险的降低。一个权重平均的组合(股票和债券各占百分之五十)的风险比单独的股票或债券的风险都要低。
投资组合的风险主要是由资产之间的相互关系的协方差决定的,这是投资组合能够降低风险的主要原因。相关系数决定了两种资产的关系。相关性越低,越有可能降低风险。