1. 大学的哪个专业是研究数据挖掘的
数据挖掘属于计算机科学与技术方向中的数据分析方向,也有在数学专业中开设。
数据挖掘技术是一种数据处理的技术,是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中、人们事先不知道又潜在有用信息和知识的过程。数据挖掘需要根据数据仓库中的数据信息,选择合适的分析工具,应用统计方法、事例推理、决策树、规则推理、模糊集、甚至神经网络、遗传算法的方法处理信息,得出有用的分析信息。数据挖掘过程是一个反复循环的过程,每一个步骤如果没有达到预期目标,都需要回到前面的步骤,重新调整并执行。
从数据本身来考虑,通常数据挖掘需要有信息收集、数据集成、数据规约、数据清理、数据变换、数据挖掘实施过程、模式评估和知识表示等8个步骤。
(1) 信息收集:根据确定的数据分析对象抽象出在数据分析中所需要的特征信息,然后选择合适的信息收集方法,将收集到的信息存入数据库。对于海量数据,选择一个合适的数据存储和管理的数据仓库是至关重要的。
(2) 数据集成:把不同来源、格式、特点性质的数据在逻辑上或物理上有机地集中,从而为企业提供全面的数据共享。
(3) 数据规约:执行多数的数据挖掘算法即使在少量数据上也需要很长的时间,而做商业运营数据挖掘时往往数据量非常大。数据规约技术可以用来得到数据集的规约表示,它小得多,但仍然接近于保持原数据的完整性,并且规约后执行数据挖掘结果与规约前执行结果相同或几乎相同。
(4) 数据清理:在数据库中的数据有一些是不完整的(有些感兴趣的属性缺少属性值),含噪声的(包含错误的属性值),并且是不一致的(同样的信息不同的表示方式),因此需要进行数据清理,将完整、正确、一致的数据信息存入数据仓库中。不然,挖掘的结果会差强人意。
(5) 数据变换:通过平滑聚集,数据概化,规范化等方式将数据转换成适用于数据挖掘的形式。对于有些实数型数据,通过概念分层和数据的离散化来转换数据也是重要的一步。
(6) 数据挖掘过程:根据数据仓库中的数据信息,选择合适的分析工具,应用统计方法、事例推理、决策树、规则推理、模糊集、甚至神经网络、遗传算法的方法处理信息,得出有用的分析信息。
(7) 模式评估:从商业角度,由行业专家来验证数据挖掘结果的正确性。
(8) 知识表示:将数据挖掘所得到的分析信息以可视化的方式呈现给用户,或作为新的知识存放在知识库中,供其他应用程序使用。
数据挖掘过程是一个反复循环的过程,每一个步骤如果没有达到预期目标,都需要回到前面的步骤,重新调整并执行。不是每件数据挖掘的工作都需要这里列出的每一步,例如在某个工作中不存在多个数据源的时候,步骤(2)数据集成的步骤便可以省略。
步骤(3)数据规约(4)数据清理(5)数据变换又合称数据预处理。在数据挖掘中,至少60%的费用可能要花在步骤(1)信息收集阶段,而至少60%以上的精力和时间是花在数据预处理
2. 什么叫数据挖掘
数据挖掘是从大量的数据中,抽取出潜在的、有价值的知识(模型或规则)的过程。
1. 数据挖掘能做什么?
1)数据挖掘能做以下六种不同事情(分析方法):
分类 (Classification)
估值(Estimation)
预言(Prediction)
相关性分组或关联规则(Affinity grouping or association rules)
聚集(Clustering)
描述和可视化(Des cription and Visualization)
2)数据挖掘分类
以上六种数据挖掘的分析方法可以分为两类:直接数据挖掘;间接数据挖掘
直接数据挖掘
目标是利用可用的数据建立一个模型,这个模型对剩余的数据,对一个特定的变量(可以
理解成数据库中表的属性,即列)进行描述。
间接数据挖掘
目标中没有选出某一具体的变量,用模型进行描述;而是在所有的变量中建立起某种关系
。
分类、估值、预言属于直接数据挖掘;后三种属于间接数据挖掘
3)各种分析方法的简介
分类 (Classification)
首先从数据中选出已经分好类的训练集,在该训练集上运用数据挖掘分类的技术,建立分
类模型,对于没有分类的数据进行分类。
例子:
a. 信用卡申请者,分类为低、中、高风险
b. 分配客户到预先定义的客户分片
注意: 类的个数是确定的,预先定义好的
估值(Estimation)
估值与分类类似,不同之处在于,分类描述的是离散型变量的输出,而估值处理连续值的
输出;分类的类别是确定数目的,估值的量是不确定的。
例子:
a. 根据购买模式,估计一个家庭的孩子个数
b. 根据购买模式,估计一个家庭的收入
c. 估计real estate的价值
一般来说,估值可以作为分类的前一步工作。给定一些输入数据,通过估值,得到未知的
连续变量的值,然后,根据预先设定的阈值,进行分类。例如:银行对家庭贷款业务,运
用估值,给各个客户记分(Score 0~1)。然后,根据阈值,将贷款级别分类。
预言(Prediction)
通常,预言是通过分类或估值起作用的,也就是说,通过分类或估值得出模型,该模型用
于对未知变量的预言。从这种意义上说,预言其实没有必要分为一个单独的类。
预言其目的是对未来未知变量的预测,这种预测是需要时间来验证的,即必须经过一定时
间后,才知道预言准确性是多少。
相关性分组或关联规则(Affinity grouping or association rules)
决定哪些事情将一起发生。
例子:
a. 超市中客户在购买A的同时,经常会购买B,即A => B(关联规则)
b. 客户在购买A后,隔一段时间,会购买B (序列分析)
聚集(Clustering)
聚集是对记录分组,把相似的记录在一个聚集里。聚集和分类的区别是聚集不依赖于预先
定义好的类,不需要训练集。
例子:
a. 一些特定症状的聚集可能预示了一个特定的疾病
b. 租VCD类型不相似的客户聚集,可能暗示成员属于不同的亚文化群
聚集通常作为数据挖掘的第一步。例如,"哪一种类的促销对客户响应最好?",对于这一类问题,首先对整个客户做聚集,将客户分组在各自的聚集里,然后对每个不同的聚集,回答问题,可能效果更好。
描述和可视化(Des cription and Visualization)
是对数据挖掘结果的表示方式。
2.数据挖掘的商业背景
数据挖掘首先是需要商业环境中收集了大量的数据,然后要求挖掘的知识是有价值的。有
价值对商业而言,不外乎三种情况:降低开销;提高收入;增加股票价格。
1)数据挖掘作为研究工具 (Research)
2)数据挖掘提高过程控制(Process Improvement)
3)数据挖掘作为市场营销工具(Marketing)
4)数据挖掘作为客户关系管理CRM工具(Customer Relationship Management)
3.数据挖掘的技术背景
1)数据挖掘技术包括三个主要部分:算法和技术;数据;建模能力
2)数据挖掘和机器学习(Machine Learning)
机器学习是计算机科学和人工智能AI发展的产物
机器学习分为两种学习方式:自组织学习(如神经网络);从例子中归纳出规则(如决策树)
数据挖掘由来
数据挖掘是八十年代,投资AI研究项目失败后,AI转入实际应用时提出的。它是一个新兴
的,面向商业应用的AI研究。选择数据挖掘这一术语,表明了与统计、精算、长期从事预
言模型的经济学家之间没有技术的重叠。
3)数据挖掘和统计
统计也开始支持数据挖掘。统计本包括预言算法(回归)、抽样、基于经验的设计等
4)数据挖掘和决策支持系统
数据仓库
OLAP(联机分析处理)、Data Mart(数据集市)、多维数据库
决策支持工具融合
将数据仓库、OLAP,数据挖掘融合在一起,构成企业决策分析环境。
4. 数据挖掘的社会背景
数据挖掘与个人预言:数据挖掘号称能通过历史数据的分析,预测客户的行为,而事实上,客户自己可能都不明确自己下一步要作什么。所以,数据挖掘的结果,没有人们想象中神秘,它不可能是完全正确的。
5.数据挖掘技术实现
在技术上可以根据它的工作过程分为:数据的抽取、数据的存储和管理、数据的展现等关键技术。
1) 数据的抽取
数据的抽取是数据进入仓库的入口。由于数据仓库是一个独立的数据环境,它需要通过抽取过程将数据从联机事务处理系统、外部数据源、脱机的数据存储介质中导入数据仓库。数据抽取在技术上主要涉及互连、复制、增量、转换、调度和监控等几个方面的处理。在数据抽取方面,未来的技术发展将集中在系统功能集成化方面,以适应数据仓库本身或数据源的变化,使系统更便于管理和维护。
2) 数据的存储和管理
数据仓库的组织管理方式决定了它有别于传统数据库的特性,也决定了其对外部数据的表现形式。数据仓库管理所涉及的数据量比传统事务处理大得多,且随时间的推移而快速累积。在数据仓库的数据存储和管理中需要解决的是如何管理大量的数据、如何并行处理大量的数据、如何优化查询等。目前,许多数据库厂家提供的技术解决方案是扩展关系型数据库的功能,将普通关系数据库改造成适合担当数据仓库的服务器。
3) 数据的展现
在数据展现方面主要的方式有:
查询:实现预定义查询、动态查询、OLAP查询与决策支持智能查询;报表:产生关系数据表格、复杂表格、OLAP表格、报告以及各种综合报表;可视化:用易于理解的点线图、直方图、饼图、网状图、交互式可视化、动态模拟、计算机动画技术表现复杂数据及其相互关系;统计:进行平均值、最大值、最小值、期望、方差、汇总、排序等各种统计分析;挖掘:利用数据挖掘等方法,从数据中得到关于数据关系和模式的知识。
6.数据挖掘与数据仓库融合发展
数据挖掘和数据仓库的协同工作,一方面,可以迎合和简化数据挖掘过程中的重要步骤,提高数据挖掘的效率和能力,确保数据挖掘中数据来源的广泛性和完整性。另一方面,数据挖掘技术已经成为数据仓库应用中极为重要和相对独立的方面和工具。
数据挖掘和数据仓库是融合与互动发展的,其学术研究价值和应用研究前景将是令人振奋的。它是数据挖掘专家、数据仓库技术人员和行业专家共同努力的成果,更是广大渴望从数据库“奴隶”到数据库“主人”转变的企业最终用户的通途。
3. 什么是数据挖掘
数据挖掘是从大量的数据中,抽取出潜在的、有价值的知识(模型或规则)的过程。
1. 数据挖掘能做什么?
1)数据挖掘能做以下六种不同事情(分析方法):
· 分类 (Classification)
· 估值(Estimation)
· 预言(Prediction)
· 相关性分组或关联规则(Affinity grouping or association rules)
· 聚集(Clustering)
· 描述和可视化(Des cription and Visualization)
2)数据挖掘分类
以上六种数据挖掘的分析方法可以分为两类:直接数据挖掘;间接数据挖掘
· 直接数据挖掘
目标是利用可用的数据建立一个模型,这个模型对剩余的数据,对一个特定的变量(可以
理解成数据库中表的属性,即列)进行描述。
· 间接数据挖掘
目标中没有选出某一具体的变量,用模型进行描述;而是在所有的变量中建立起某种关系
。
· 分类、估值、预言属于直接数据挖掘;后三种属于间接数据挖掘
3)各种分析方法的简介
· 分类 (Classification)
首先从数据中选出已经分好类的训练集,在该训练集上运用数据挖掘分类的技术,建立分
类模型,对于没有分类的数据进行分类。
例子:
a. 信用卡申请者,分类为低、中、高风险
b. 分配客户到预先定义的客户分片
注意: 类的个数是确定的,预先定义好的
· 估值(Estimation)
估值与分类类似,不同之处在于,分类描述的是离散型变量的输出,而估值处理连续值的
输出;分类的类别是确定数目的,估值的量是不确定的。
例子:
a. 根据购买模式,估计一个家庭的孩子个数
b. 根据购买模式,估计一个家庭的收入
c. 估计real estate的价值
一般来说,估值可以作为分类的前一步工作。给定一些输入数据,通过估值,得到未知的
连续变量的值,然后,根据预先设定的阈值,进行分类。例如:银行对家庭贷款业务,运
用估值,给各个客户记分(Score 0~1)。然后,根据阈值,将贷款级别分类。
· 预言(Prediction)
通常,预言是通过分类或估值起作用的,也就是说,通过分类或估值得出模型,该模型用
于对未知变量的预言。从这种意义上说,预言其实没有必要分为一个单独的类。
预言其目的是对未来未知变量的预测,这种预测是需要时间来验证的,即必须经过一定时
间后,才知道预言准确性是多少。
· 相关性分组或关联规则(Affinity grouping or association rules)
决定哪些事情将一起发生。
例子:
a. 超市中客户在购买A的同时,经常会购买B,即A => B(关联规则)
b. 客户在购买A后,隔一段时间,会购买B (序列分析)
· 聚集(Clustering)
聚集是对记录分组,把相似的记录在一个聚集里。聚集和分类的区别是聚集不依赖于预先
定义好的类,不需要训练集。
例子:
a. 一些特定症状的聚集可能预示了一个特定的疾病
b. 租VCD类型不相似的客户聚集,可能暗示成员属于不同的亚文化群
聚集通常作为数据挖掘的第一步。例如,"哪一种类的促销对客户响应最好?",对于这一
类问题,首先对整个客户做聚集,将客户分组在各自的聚集里,然后对每个不同的聚集,
回答问题,可能效果更好。
· 描述和可视化(Des cription and Visualization)
是对数据挖掘结果的表示方式。
2.数据挖掘的商业背景
数据挖掘首先是需要商业环境中收集了大量的数据,然后要求挖掘的知识是有价值的。有
价值对商业而言,不外乎三种情况:降低开销;提高收入;增加股票价格。
1)数据挖掘作为研究工具 (Research)
2)数据挖掘提高过程控制(Process Improvement)
3)数据挖掘作为市场营销工具(Marketing)
4)数据挖掘作为客户关系管理CRM工具(Customer Relationship Management)
3.数据挖掘的技术背景
1)数据挖掘技术包括三个主要部分:算法和技术;数据;建模能力
2)数据挖掘和机器学习(Machine Learning)
· 机器学习是计算机科学和人工智能AI发展的产物
· 机器学习分为两种学习方式:自组织学习(如神经网络);从例子中归纳出规则(如决
策树)
· 数据挖掘由来
数据挖掘是八十年代,投资AI研究项目失败后,AI转入实际应用时提出的。它是一个新兴
的,面向商业应用的AI研究。选择数据挖掘这一术语,表明了与统计、精算、长期从事预
言模型的经济学家之间没有技术的重叠。
3)数据挖掘和统计
统计也开始支持数据挖掘。统计本包括预言算法(回归)、抽样、基于经验的设计等
4)数据挖掘和决策支持系统
· 数据仓库
· OLAP(联机分析处理)、Data Mart(数据集市)、多维数据库
· 决策支持工具融合
将数据仓库、OLAP,数据挖掘融合在一起,构成企业决策分析环境。
4. 数据挖掘的社会背景
数据挖掘与个人预言:数据挖掘号称能通过历史数据的分析,预测客户的行为,而事实上
,客户自己可能都不明确自己下一步要作什么。所以,数据挖掘的结果,没有人们想象中
神秘,它不可能是完全正确的。
客户的行为是与社会环境相关连的,所以数据挖掘本身也受社会背景的影响。比如说,在
美国对银行信用卡客户信用评级的模型运行得非常成功,但是,它可能不适合中国
4. “基于数据挖掘的股票交易分析--模型分析” 这个题目,是什么意思 哪位哥们,能给点具体解释么
很难写,主要牵涉到数据挖掘(软件)和股票交易两方面的专业。数据挖掘需要设计软件进行建模,而股票交易需要进行实证(博士论文都可以写了)。
建议:可以写基于统计挖掘的股票交易分析--模型分析,这样就简单多了,只需要在股票软件上得出一些统计数据,然后进行验证就可以了,可操作性强。
5. 股票分析主要从哪些方面进行分析
这要看楼主的理念了。
如果是价值投资的理念的话:应该从基本面出发,多了解上市公司的财务报表,业绩、行业地位、估值、成长性等。
如果是技术分析流派的话:应该关注个股资金流向(资金是推动股票价格波动的最终因素),而资金流向会通过K线形态与成交量表现出来,当然,还有很多基础的技术指标,比如:MA,KDJ,MACD,BOLL,CCI,DMI等等。
同时,不论炒股还是炒期货,抑或是其他投资/投机渠道,资金管理也很重要。
建议楼主多了解,多看少动。将各种分析模式相互结合应用,摸索出适用自己的投资分析方式。刚开始时一定要轻仓参与。
但原以上回答对楼主有所帮助。祝:投资顺利,财源滚滚~!
6. 到底是什么数据挖掘呢,需要什么技术呢
数据挖掘是近年来数据库应用技术中相当热门的议题,看似神奇、听来时髦,实际上却也不是什么新东西,因其所用之诸如预测模型、数据分割,连结分析(Link Analysis)、偏差侦测(Deviation Detection)等,美国早在二次世界大战前就已应用运用在人口普查及军事等方面。
随着信息科技超乎想象的进展,许多新的计算机分析工具问世,例如关系型数据库、模糊计算理论、基因算法则以及类神经网络等,使得从数据中发掘宝藏成为一种系统性且可实行的程序。
R一般而言,数据挖掘的理论技术可分为传统技术与改良技术两支。传统技术以统计分析为代表,统计学内所含序列统计、概率论、回归分析、类别数据分析等都属于传统数据挖掘技术,尤其 数据挖掘 对象多为变量繁多且样本数庞大的数据,是以高等统计学里所含括之多变量分析中用来精简变量的因素分析(Factor Analysis)、用来分类的判别分析(DiscriminantAnalysis),以及用来区隔群体的分群分析(Cluster Analysis)等,在数据挖掘过程中特别常用。
在改良技术方面,应用较普遍的有决策树理论(Decision Trees)、类神经网络(Neural Network)以及规则归纳法(Rules Inction)等。决策树是一种用树枝状展现数据受各变量的影响情形之预测模型,根据对目标变量产生之效应的不同而建构分类的规则,一般多运用在对客户数据的分析上,例如针对有回函与未回含的邮寄对象找出影响其分类结果的变量组合,常用分类方法为CART(Classification and Regression Trees)及CHAID(Chi-Square Automatic InteractionDetector)两种。
R类神经网络是一种仿真人脑思考结构的数据分析模式,由输入之变量与数值中自我学习并根据学习经验所得之知识不断调整参数以期建构数据的型样 (patterns)。类神经网络为非线性的设计,与传统回归分析相比,好处是在进行分析时无须限定模式,特别当数据变量间存有交互效应时可自动侦测出;缺点则在于其分析过程为一黑盒子,故常无法以可读之模型格式展现,每阶段的加权与转换亦不明确,是故类神经网络多利用于数据属于高度非线性且带有相当程度的变量交感效应时。
规则归纳法是知识发掘的领域中最常用的格式,这是一种由一连串的「如果…/则…(If / Then)」之逻辑规则对数据进行细分的技术,在实际运用时如何界定规则为有效是最大的问题,通常需先将数据中发生数太少的项目先剔除,以避免产生无意义的逻辑规则。
7. 股票数据分析都有哪些
看盘的几个小技巧:
第一:看盘的首要重点是看板块和热点个股的轮动规律,进而推测出行情的大小和持续性时间变化。比如每天应该注意是否有涨停个股开盘,如果有,那么说明主力资金还在努力选择突破口,如果两市都有10只以上的涨停个股开盘,则说明市场处于多头气氛,人气比较旺,少于这个标准则说明市场人气不佳,投资者应该当心大盘继续下跌风险。如果每天盘面都有跌停板,并且是以板块方式出现,那么,应该警惕新一轮的中级调整开始。在热点上,如果前一交易日涨停的个股或是上涨比较好的板块难以维持两天以上的行情,那么,就说明主力资金属于短炒性质,此个股或板块不能成为一波行情的领头羊,同时也意味着这一轮上涨属于单日短线反弹。反过来讲,如果热点板块每天都有2-3个以上,平均涨幅都在2%以上,并相互进行有效轮番上涨,则中期向好行情就值得期待。2010年7月初、中期,有色资源、煤炭资源、稀土资源以及新能源、智能电网等板块交替上涨,从而产生中级行情。
第二:看盘应该注重关注成交量。根据两市目前市值情况看,上海大盘成交量小于1000亿应做震荡整理理解,700亿以下为缩量,小于500亿可以理解为地量,超过1100亿应该理解为放量。地量背后往往意味着反转,例如,2010年6月底和7月初之间,先后多个交易日上海股市成交量低于500亿,这个时候空仓资金应为自己的重新进场做好准备。当大盘摆脱下降趋势,走出一个缓慢的底部构筑的形态下,成交量温和状态下,投资者可以以不超过半仓的水平买股持股。如果,当股票持续上涨,成交量放大,换手率超过15%(中小板、创业板个股特定条件下可以放宽到20%左右,另外新股、次新股、限售股、转赠股、配股上市日不在此列),5-20日线开始死叉转向,那么此类短线题材股和概念股应该考虑逐步抛售。
第三:努力培养盘感,运用技术手段捕捉市场机会。不管是什么品种的股票,如经过短期暴跌,跌幅超过50%,下跌垂直度越大,那么关注价值就越高,当某一天突然缩量,短线买进的机会来了。因为急跌暴跌后,成交量突然萎缩就杀跌盘已经枯竭,肯定会出现反弹,这个时候可以坚决地战胜自己恐慌情绪积极进去抢一把反弹就走人。同样,如果股票价格在接连涨了很多时间,而且高位开始频繁放量,可是价格始终盘旋在某个小区域,连续用小单在尾盘直线拉高制造高位串阳K线,筹码峰密集严重扩散,则说明这个完全是主力在出货!必须坚决清仓。
第四:别小看低位的三连阳,别漠视高位的三连阴。一般讲股票价格在接连下跌一段时间后,突然在某天不那么狂跌,而且,K线上接连出现红三兵,价格波动幅度又不是那样大,通常价格一串上去又被单子砸下来了,请你注意了,这个时候往往就是有主力潜伏着开始收货中;反过来,如果在涨势继续了一段时间,股票价格已经很大幅度地脱离了主力原始成本,这个时候出现了高位几连阴,股票价格重心开始下移,尤其是在一些时候,主力利用快要收盘的时候,突然用几笔单把股票价格迅速买回日均线,在随后的几天里同样的手法经常出现,K线图上收出长下影,那说明主力出货的概率已经达到80%以上,它的这些做法都是为了麻痹经验不足的资金。假如某天连10日、20日、30日线都跌破,不管是赚还是赔,坚决离场。
第五:大涨买龙头,如何发觉龙头,其实在市场大跌气氛里很容易判断龙头股,应密切注意涨幅榜中始终跃居前几位的逆市红盘股,特别是价格处于“三低”范畴,或是股价在15-20元之间,离新多主力拉升底部区域不足50%空间,在大盘大跌的当日或随后几天时间里,果断用长阳反击K线收复前期长阴失地的,则有望成为反弹的龙头。市场的法则永远是“强者恒强,弱者恒弱”。当中级以上行情出现的时候,投资者要善于提早发现谁是龙头,并果断追进,抓稳抓牢,别因一时盘面震荡轻易下马。通常洗得越凶,后期飚涨概率越大。炒股抢占先机概念很重要。有的股票难当龙头最好在行情启动初期果断放弃,不要跟自己过不去。
第六:在涨势中不要轻视冷门股、问题股。 你只要它涨得好,涨得牛就是,“涨时重势,跌时重质”就是这个道理。任何时候,主力和庄家比我们聪明,他们不是傻瓜,当股票一个敢于在大势不好的情况下缩量封出涨停板,肯定有其不被市场大众知道的东西隐藏在后面。熊市里,很多2-5元中小盘个股就是这样无量快速涨停,通常这个时候非常考验短线高手的看盘功力,因为这样的股票往往留给人的思考、判断、下单时间不会超过一分钟,一般此类股很容易出现连续涨停,甚至是一字涨停,像2010年7月27日,很多ST股大跌的时候,ST黑化却震荡走高,上方买盘都被逐步吃掉,并在临近收盘的最后10分钟封上涨停,这说明市场已有嗅觉灵敏的资金闻到了变盘气息在重组前夜下手。
8. 股票市场搞数据挖掘,数据分析来炒股有没机会
有机会,而且机会不小,但是我等散户靠数据分析,可能自身实力差的太悬殊了。
硬件设备就不达标哦。
9. 请问什么是数据挖掘
数据挖掘是从大量的数据中,抽取出潜在的、有价值的知识(模型或规则)的过程。
1. 数据挖掘能做什么?
1)数据挖掘能做以下六种不同事情(分析方法):
· 分类 (Classification)
· 估值(Estimation)
· 预言(Prediction)
· 相关性分组或关联规则(Affinity grouping or association rules)
· 聚集(Clustering)
· 描述和可视化(Des cription and Visualization)
2)数据挖掘分类
以上六种数据挖掘的分析方法可以分为两类:直接数据挖掘;间接数据挖掘
· 直接数据挖掘
目标是利用可用的数据建立一个模型,这个模型对剩余的数据,对一个特定的变量(可以
理解成数据库中表的属性,即列)进行描述。
· 间接数据挖掘
目标中没有选出某一具体的变量,用模型进行描述;而是在所有的变量中建立起某种关系
。
· 分类、估值、预言属于直接数据挖掘;后三种属于间接数据挖掘
3)各种分析方法的简介
· 分类 (Classification)
首先从数据中选出已经分好类的训练集,在该训练集上运用数据挖掘分类的技术,建立分
类模型,对于没有分类的数据进行分类。
例子:
a. 信用卡申请者,分类为低、中、高风险
b. 分配客户到预先定义的客户分片
注意: 类的个数是确定的,预先定义好的
· 估值(Estimation)
估值与分类类似,不同之处在于,分类描述的是离散型变量的输出,而估值处理连续值的
输出;分类的类别是确定数目的,估值的量是不确定的。
例子:
a. 根据购买模式,估计一个家庭的孩子个数
b. 根据购买模式,估计一个家庭的收入
c. 估计real estate的价值
一般来说,估值可以作为分类的前一步工作。给定一些输入数据,通过估值,得到未知的
连续变量的值,然后,根据预先设定的阈值,进行分类。例如:银行对家庭贷款业务,运
用估值,给各个客户记分(Score 0~1)。然后,根据阈值,将贷款级别分类。
· 预言(Prediction)
通常,预言是通过分类或估值起作用的,也就是说,通过分类或估值得出模型,该模型用
于对未知变量的预言。从这种意义上说,预言其实没有必要分为一个单独的类。
预言其目的是对未来未知变量的预测,这种预测是需要时间来验证的,即必须经过一定时
间后,才知道预言准确性是多少。
· 相关性分组或关联规则(Affinity grouping or association rules)
决定哪些事情将一起发生。
例子:
a. 超市中客户在购买A的同时,经常会购买B,即A => B(关联规则)
b. 客户在购买A后,隔一段时间,会购买B (序列分析)
· 聚集(Clustering)
聚集是对记录分组,把相似的记录在一个聚集里。聚集和分类的区别是聚集不依赖于预先
定义好的类,不需要训练集。
例子:
a. 一些特定症状的聚集可能预示了一个特定的疾病
b. 租VCD类型不相似的客户聚集,可能暗示成员属于不同的亚文化群
聚集通常作为数据挖掘的第一步。例如,"哪一种类的促销对客户响应最好?",对于这一
类问题,首先对整个客户做聚集,将客户分组在各自的聚集里,然后对每个不同的聚集,
回答问题,可能效果更好。
· 描述和可视化(Des cription and Visualization)
是对数据挖掘结果的表示方式。
2.数据挖掘的商业背景
数据挖掘首先是需要商业环境中收集了大量的数据,然后要求挖掘的知识是有价值的。有
价值对商业而言,不外乎三种情况:降低开销;提高收入;增加股票价格。
1)数据挖掘作为研究工具 (Research)
2)数据挖掘提高过程控制(Process Improvement)
3)数据挖掘作为市场营销工具(Marketing)
4)数据挖掘作为客户关系管理CRM工具(Customer Relationship Management)
3.数据挖掘的技术背景
1)数据挖掘技术包括三个主要部分:算法和技术;数据;建模能力
2)数据挖掘和机器学习(Machine Learning)
· 机器学习是计算机科学和人工智能AI发展的产物
· 机器学习分为两种学习方式:自组织学习(如神经网络);从例子中归纳出规则(如决
策树)
· 数据挖掘由来
数据挖掘是八十年代,投资AI研究项目失败后,AI转入实际应用时提出的。它是一个新兴
的,面向商业应用的AI研究。选择数据挖掘这一术语,表明了与统计、精算、长期从事预
言模型的经济学家之间没有技术的重叠。
3)数据挖掘和统计
统计也开始支持数据挖掘。统计本包括预言算法(回归)、抽样、基于经验的设计等
4)数据挖掘和决策支持系统
· 数据仓库
· OLAP(联机分析处理)、Data Mart(数据集市)、多维数据库
· 决策支持工具融合
将数据仓库、OLAP,数据挖掘融合在一起,构成企业决策分析环境。
4. 数据挖掘的社会背景
数据挖掘与个人预言:数据挖掘号称能通过历史数据的分析,预测客户的行为,而事实上
,客户自己可能都不明确自己下一步要作什么。所以,数据挖掘的结果,没有人们想象中
神秘,它不可能是完全正确的。
客户的行为是与社会环境相关连的,所以数据挖掘本身也受社会背景的影响。比如说,在
美国对银行信用卡客户信用评级的模型运行得非常成功,但是,它可能不适合中国
转载的