❶ java 如何实现 获取实时股票数据
一般有三种方式:
网页爬虫。采用爬虫去爬取目标网页的股票数据,去GitHub或技术论坛(如CSDN、51CTO)上找一下别人写的爬虫集成到项目中。
请求第三方API。会有专门的公司(例如网络API市场)提供股票数据,你只需要去购买他们的服务,使用他们提供的SDK,仿照demo开发实现即可。如下图所示:
❷ 哪个网站可以下载股票多年的价格数据
在寻找免费股票历史数据的途径时,雅虎数据是一个常见选择,它提供了API接口,然而缺点是其数据未进行复权处理,这对研究工作有较大限制。此外,退市股票的数据在雅虎数据中可能缺失。
另一种选择是tushare,一个基于Python的开源项目,由北京的一位程序员Jimmy开发。tushare通过爬取新浪、腾讯、凤凰等财经网站的数据,提供其可获取的股票数据。它每天自动更新当天的数据,功能较为全面。然而,它提供的历史数据中不包含退市股票的信息,并且只涵盖最近几年的数据,无法满足更长时间跨度的需求。
对于希望获取全面、历史数据的用户,推荐使用预测者网。该平台通过从各种渠道收集、整理和清洗数据,然后以相对低廉的价格进行销售。根据个人经验,一份包含所有股票从1990年至今的历史数据,只需要十几块钱,而且数据量可达1个多GB。相较于自己整理数据可能花费的时间和精力,使用预测者网提供的数据无疑是性价比更高的选择。
❸ 利用Tushare获取股票数据(全面详细,照着敲就可以)
Tushare是一个专为金融分析人员设计的免费Python财经数据接口包,它简化了从数据采集到存储的过程,以pandas DataFrame格式提供高效的数据。通过Python的pandas、NumPy和Matplotlib,分析人员可以方便地进行数据处理和可视化,同时支持Excel和关系型数据库的分析。Tushare覆盖了股票、基金、期货、数字货币等广泛的数据内容,以及基本面数据,如公司财务和基金经理信息,且支持多语言的SDK和RESTful接口,适应不同用户的需求。数据存储选项包括Oracle、MySQL、MongoDB、HDF5和CSV,确保了数据获取的性能和便利性。
安装Tushare依赖环境只需执行pip install tushare,查看版本信息时,导入并打印tushare的__version__属性即可。以下是使用Tushare获取股票数据的步骤:
❹ 请教python量化交易时用到的股票每天逐笔交易数据如何爬取
首先,打开期货交易软件,登录自己的交易账户。选择相应的期货合约,进入交易界面。
其次,找到“成交记录”或“逐笔成交”等相关功能按钮。在一些交易软件中,这个按钮可能位于交易界面的底部或侧边栏。
然后,点击“成交记录”或“逐笔成交”按钮,进入成交记录页面。在这个页面上,你可以看到最近的成交记录列表。
接下来,找到“导出”或“导出成交明细”等按钮。这个按钮通常位于成交记录页面的上方或下方。
然后,点击“导出”或“导出成交明细”按钮,选择导出文件的格式和保存路径。一般来说,我们可以选择导出为Excel或CSV格式的文件,这样可以方便后续的数据处理和分析。
最后,点击“确认”或“导出”按钮,等待软件完成导出过程。导出的速度取决于成交记录的数量和电脑性能等因素。
一旦导出完成,你就可以在选择的保存路径中找到导出的文件。通过打开这个文件,你就可以查看和分析期货逐笔成交明细了。
导出的期货逐笔成交明细文件通常包括以下信息:交易日期、交易时间、成交价格、成交数量、买卖方向等。这些信息可以帮助你追踪每一笔成交的情况,分析市场的买卖力量和交易行为。
通过对期货逐笔成交明细的分析,交易者和投资者可以获取以下方面的信息:
首先,了解市场的成交情况。通过查看成交价格和成交数量,可以判断市场的价格走势和交易活跃度。
其次,分析市场的买卖力量。通过统计买入和卖出的数量和比例,可以了解市场的多空双方力量对比,判断市场的走势和趋势。
再次,研究交易者的行为和策略。通过分析成交记录,可以了解交易者的买卖行为和策略,发现一些潜在的交易机会。
最后,优化交易策略和风险管理。通过对期货逐笔成交明细的研究,可以发现一些常见的交易错误和风险因素,从而改进自己的交易策略和风险管理能力。
❺ 股票数据爬虫进阶:免费、开源的股票爬虫Python库,实测真香
在探索股票数据爬虫的世界中,选择合适的Python库是至关重要的一步。本文将介绍一个强大的免费、开源库——Easyquotation,它集成了多个股票数据源,包括新浪财经、集思录、腾讯财经等,帮助投资者获取实时和历史数据。
首先,要利用Easyquotation,你需要确保安装了两个库:Requests和Easyquotation。Requests是爬虫的基础,用于发送HTTP请求,而Easyquotation则提供了对多个数据源的统一接口。安装方式灵活,可以通过pip一键安装,或者从GitHub下载源代码进行安装。
Easyquotation的核心功能是通过其API灵活地选择数据源。例如,通过新浪财经获取实时市场股票数据、从集思录获取债息相关的投资品种数据,以及从腾讯财经获取A股日内行情和港股数据。每个数据源都支持特定的API方法,如获取实时数据、历史数据等,使得数据获取和分析变得高效便捷。
本文通过示例详细展示了如何使用Easyquotation进行数据爬取。以新浪财经为例,可以轻松获取全市场股票实时数据,包括交易所上市ETF的实时Ticker数据、个股实时Ticker数据,以及交易所指数的实时数据。在集思录的数据爬虫中,可以获取分级A、分级B、QDII以及ETF的数据,并转换为DataFrame格式方便分析。腾讯财经的爬虫功能尤其强大,不仅提供A股的日内分时数据、港股的日线数据,还支持获取港股的实时行情数据。
在实际应用中,这些数据可以用于量化交易策略的开发、市场趋势分析、投资组合优化等。通过Easyquotation,用户可以更加高效地整合和利用来自不同数据源的股票数据,为投资决策提供有力支持。